首页 优秀范文 现代电力电子技术

现代电力电子技术赏析八篇

发布时间:2023-09-28 09:20:10

序言:写作是分享个人见解和探索未知领域的桥梁,我们为您精选了8篇的现代电力电子技术样本,期待这些样本能够为您提供丰富的参考和启发,请尽情阅读。

现代电力电子技术

第1篇

关键词:电力电子技术;开关电源

现代电源技术是应用电力电子半导体器件,综合自动控制、计算机(微处理器)技术和电磁技术的多学科边缘交又技术。在各种高质量、高效、高可靠性的电源中起关键作用,是现代电力电子技术的具 体应用。

当前,电力电子作为节能、节才、自动化、智能化、机电一体化的基础,正朝着应用技术高频化、硬件结构模块化、产品性能绿色化的方向发展。在不远的将来,电力电子技术将使电源技术更加成熟、经 济、实用,实现高效率和高品质用电相结合。

1. 电力电子技术的发展

现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。

1.1 整流器时代

大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。

1.2 逆变器时代

七十年代出现了世界范围的能源危机,交流电机变频惆速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。

1.3 变频器时代

进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能更加完善可靠,而且使现代电子技术不断向高频化发展,为用电设备的高效节材节能,实现小型轻量化,机电一体化和智能化提供了重要的技术基础。

2. 现代电力电子的应用领域

2.1 计算机高效率绿色电源

高速发展的计算机技术带领人类进入了信息社会,同时也促进了电源技术的迅速发展。八十年代,计算机全面采用了开关电源,率先完成计算机电源换代。接着开关电源技术相继进人了电子、电器设备领域。

计算机技术的发展,提出绿色电脑和绿色电源。绿色电脑泛指对环境无害的个人电脑和相关产品,绿色电源系指与绿色电脑相关的高效省电电源,根据美国环境保护署l992年6月17日"能源之星"计划规定,桌上型个人电脑或相关的外围设备,在睡眠状态下的耗电量若小于30瓦,就符合绿色电脑的要求,提高电源效率是降低电源消耗的根本途径。就目前效率为75%的200瓦开关电源而言,电源自身要消耗50瓦的能源。

2.2 通信用高频开关电源

通信业的迅速发展极大的推动了通信电源的发展。高频小型化的开关电源及其技术已成为现代通信供电系统的主流。在通信领域中,通常将整流器称为一次电源,而将直流-直流(DC/DC)变换器称为二次电源。一次电源的作用是将单相或三相交流电网变换成标称值为48V的直流电源。目前在程控交换机用的一次电源中,传统的相控式稳压电源己被高频开关电源取代,高频开关电源(也称为开关型整流器SMR)通过MOSFET或IGBT的高频工作,开关频率一般控制在50-100kHz范围内,实现高效率和小型化。近几年,开关整流器的功率容量不断扩大,单机容量己从48V/12.5A、48V/20A扩大到48V/200A、48V/400A。

因通信设备中所用集成电路的种类繁多,其电源电压也各不相同,在通信供电系统中采用高功率密度的高频DC-DC隔离电源模块,从中间母线电压(一般为48V直流)变换成所需的各种直流电压,这样可大大减小损耗、方便维护,且安装、增加非常方便。一般都可直接装在标准控制板上,对二次电源的要求是高功率密度。因通信容量的不断增加,通信电源容量也将不断增加。

2.3 直流-直流(DC/DC)变换器

DC/DC变换器将一个固定的直流电压变换为可变的直流电压,这种技术被广泛应用于无轨电车、地铁列车、电动车的无级变速和控制,同时使上述控制获得加速平稳、快速响应的性能,并同时收到节约电能的效果。用直流斩波器代替变阻器可节约电能(20~30)%。直流斩波器不仅能起调压的作用(开关电源), 同时还能起到有效地抑制电网侧谐波电流噪声的作用。

通信电源的二次电源DC/DC变换器已商品化,模块采用高频PWM技术,开关频率在500kHz左右,功率密度为5W~20W/in3。随着大规模集成电路的发展,要求电源模块实现小型化,因此就要不断提高开关频率和采用新的电路拓扑结构,目前已有一些公司研制生产了采用零电流开关和零电压开关技术的二次电源模块,功率密度有较大幅度的提高。

2.4 不间断电源(UPS)

不间断电源(UPS)是计算机、通信系统以及要求提供不能中断场合所必须的一种高可靠、高性能的电源。交流市电输入经整流器变成直流,一部分能量给蓄电池组充电,另一部分能量经逆变器变成交流,经转换开关送到负载。为了在逆变器故障时仍能向负载提供能量,另一路备用电源通过电源转换开关来实现。

现代UPS普遍了采用脉宽调制技术和功率M0SFET、IGBT等现代电力电子器件,电源的噪声得以降低,而效率和可靠性得以提高。微处理器软硬件技术的引入,可以实现对UPS的智能化管理,进行远程维护和远程诊断。

目前在线式UPS的最大容量已可作到600kVA。超小型UPS发展也很迅速,已经有0.5kVA、lkVA、2kVA、3kVA等多种规格的产品。

2.5 变频器电源

变频器电源主要用于交流电机的变频调速,其在电气传动系统中占据的地位日趋重要,已获得巨大的节能效果。变频器电源主电路均采用交流-直流-交流方案。工频电源通过整流器变成固定的直流电压,然后由大功率晶体管或IGBT组成的PWM高频变换器, 将直流电压逆变成电压、频率可变的交流输出,电源输出波形近似于正弦波,用于驱动交流异步电动机实现无级调速。

国际上400kVA以下的变频器电源系列产品已经问世。八十年代初期,日本东芝公司最先将交流变频调速技术应用于空调器中。至1997年,其占有率已达到日本家用空调的70%以上。变频空调具有舒适、节能等优点。国内于90年代初期开始研究变频空调,96年引进生产线生产变频空调器,逐渐形成变频空调开发生产热点。预计到2000年左右将形成。变频空调除了变频电源外,还要求有适合于变频调速的压缩机电机。优化控制策略,精选功能组件,是空调变频电源研制的进一步发展方向。

2.6 高频逆变式整流焊机电源

高频逆变式整流焊机电源是一种高性能、高效、省材的新型焊机电源,代表了当今焊机电源的发展方向。由于IGBT大容量模块的商用化,这种电源更有着广阔的应用前景。

逆变焊机电源大都采用交流-直流-交流-直流(AC-DC-AC-DC)变换的方法。50Hz交流电经全桥整流变成直流,IGBT组成的PWM高频变换部分将直流电逆变成20kHz的高频矩形波,经高频变压器耦合, 整流滤波后成为稳定的直流,供电弧使用。

由于焊机电源的工作条件恶劣,频繁的处于短路、燃弧、开路交替变化之中,因此高频逆变式整流焊机电源的工作可靠性问题成为最关键的问题,也是用户最关心的问题。采用微处理器做为脉冲宽度调制(PWM)的相关控制器,通过对多参数、多信息的提取与分析,达到预知系统各种工作状态的目的,进而提前对系统做出调整和处理,解决了目前大功率IGBT逆变电源可靠性。

国外逆变焊机已可做到额定焊接电流300A,负载持续率60%,全载电压60~75V,电流调节范围5~300A,重量29kg。

2.7 大功率开关型高压直流电源

大功率开关型高压直流电源广泛应用于静电除尘、水质改良、医用X光机和CT机等大型设备。电压高达50~l59kV,电流达到0.5A以上,功率可达100kW。

自从70年代开始,日本的一些公司开始采用逆变技术,将市电整流后逆变为3kHz左右的中频,然后升压。进入80年代,高频开关电源技术迅速发展。德国西门子公司采用功率晶体管做主开关元件,将电源的开关频率提高到20kHz以上。并将干式变压器技术成功的应用于高频高压电源,取消了高压变压器油箱,使变压器系统的体积进一步减小。

国内对静电除尘高压直流电源进行了研制,市电经整流变为直流,采用全桥零电流开关串联谐振逆变电路将直流电压逆变为高频电压,然后由高频变压器升压,最后整流为直流高压。在电阻负载条件下,输出直流电压达到55kV,电流达到15mA,工作频率为25.6kHz。

2.8 电力有源滤波器

传统的交流-直流(AC-DC)变换器在投运时,将向电网注入大量的谐波电流,引起谐波损耗和干扰,同时还出现装置网侧功率因数恶化的现象,即所谓"电力公害",例如,不可控整流加电容滤波时,网侧三次谐波含量可达(70~80)%,网侧功率因数仅有0.5~0.6。

电力有源滤波器是一种能够动态抑制谐波的新型电力电子装置,能克服传统LC滤波器的不足,是一种很有发展前途的谐波抑制手段。滤波器由桥式开关功率变换器和具体控制电路构成。与传统开关电源的区别是:(l)不仅反馈输出电压,还反馈输入平均电流; (2)电流环基准信号为电压环误差信号与全波整流电压取样信号之乘积。

2.9 分布式开关电源供电系统

分布式电源供电系统采用小功率模块和大规模控制集成电路作基本部件,利用最新理论和技术成果,组成积木式、智能化的大功率供电电源,从而使强电与弱电紧密结合,降低大功率元器件、大功率装置(集中式)的研制压力,提高生产效率。

八十年代初期,对分布式高频开关电源系统的研究基本集中在变换器并联技术的研究上。八十年代中后期,随着高频功率变换技术的迅述发展,各种变换器拓扑结构相继出现,结合大规模集成电路和功率元器件技术,使中小功率装置的集成成为可能,从而迅速地推动了分布式高频开关电源系统研究的展开。自八十年代后期开始,这一方向已成为国际电力电子学界的研究热点,论文数量逐年增加,应用领域不断扩大。

分布供电方式具有节能、可靠、高效、经济和维护方便等优点。已被大型计算机、通信设备、航空航天、工业控制等系统逐渐采纳,也是超高速型集成电路的低电压电源(3.3V)的最为理想的供电方式。在大功率场合,如电镀、电解电源、电力机车牵引电源、中频感应加热电源、电动机驱动电源等领域也有广阔的应用前景。

3. 高频开关电源的发展趋势

在电力电子技术的应用及各种电源系统中,开关电源技术均处于核心地位。对于大型电解电镀电源,传统的电路非常庞大而笨重,如果采用高顿开关电源技术,其体积和重量都会大幅度下降,而且可极大提高电源利用效率、节省材料、降低成本。在电动汽车和变频传动中,更是离不开开关电源技术,通过开关电源改变用电频率,从而达到近于理想的负载匹配和驱动控制。高频开关电源技术,更是各种大功率开关电源(逆变焊机、通讯电源、高频加热电源、激光器电源、电力操作电源等)的核心技术。

3.1 高频化

理论分析和实践经验表明,电气产品的变压器、电感和电容的体积重量与供电频率的平方根成反比。所以当我们把频率从工频50Hz提高到20kHz,提高400倍的话,用电设备的体积重量大体下降至工频设计的 5~l0%。无论是逆变式整流焊机,还是通讯电源用的开关式整流器,都是基于这一原理。同样,传统"整流行业"的电镀、电解、电加工、充电、浮充电、电力合 闸用等各种直流电源也可以根据这一原理进行改造, 成为"开关变换类电源",其主要材料可以节约90%或更高,还可节电30%或更多。由于功率电子器件工作频率上限的逐步提高,促使许多原来采用电子管的传统高频设备固态化,带来显著节能、节水、节约材料的经济效益,更可体现技术含量的价值。

3.2 模块化

模块化有两方面的含义,其一是指功率器件的模块化,其二是指电源单元的模块化。我们常见的器件模块,含有一单元、两单元、六单元直至七单元,包括开关器件和与之反并联的续流二极管,实质上都属于"标准"功率模块(SPM)。近年,有些公司把开关器件的驱动保护电路也装到功率模块中去,构成了"智能化"功率模块(IPM),不但缩小了整机的体积,更方便了整机的设计制造。实际上,由于频率的不断提高,致使引线寄生电感、寄生电容的影响愈加严重,对器件造成更大的电应力(表现为过电压、过电流毛刺)。为了提高系统的可靠性,有些制造商开发了"用户专用"功率模块(ASPM),它把一台整机的几乎所有硬件都以芯片的形式安装到一个模块中,使元器件之间不再有传统的引线连接,这样的模块经过严格、合理的热、电、 机械方面的设计,达到优化完美的境地。它类似于微电子中的用户专用集成电路(ASIC)。只要把控制软件写入该模块中的微处理器芯片,再把整个模块固定在相应的散热器上,就构成一台新型的开关电源装置。由此可见,模块化的目的不仅在于使用方便,缩小整机体积,更重要的是取消传统连线,把寄生参数降到最小,从而把器件承受的电应力降至最低,提高系统的可靠性。这样,不但提高了功率容量, 在有限的器件容量的情况下满足了大电流输出的要求, 而且通过增加相对整个系统来说功率很小的冗余电源模块,极大的提高系统可靠性,即使万一出现单模块故障,也不会影响系统的正常工作,而且为修复提供充分的时间。

转贴于  3.3 数字化

在传统功率电子技术中,控制部分是按模拟信号来设计和工作的。在六、七十年代,电力电子技术 拟电路基础上的。但是,现在数字式信号、数字电路显得越来越重要,数字信号处理技术日趋完善成熟,显示出越来越多的优点:便于计算机处理控制、避免模拟信号的畸变失真、减小杂散信号的干扰(提高抗干扰能力)、便于软件包调试和遥感遥测遥调,也便于自诊断、容错等技术的植入。所以,在八、九十年代,对于各类电路和系统的设计来说,模拟技术还是有用的,特别是:诸如印制版的布图、电磁兼容(EMC) 问题以及功率因数修正(PFC)等问题的解决,离不开模拟技术的知识,但是对于智能化的开关电源,需要用计算机控制时,数字化技术就离不开了。

3.4 绿色化

电源系统的绿色化有两层含义:首先是显著节电, 这意味着发电容量的节约,而发电是造成环境污染的重要原因,所以节电就可以减少对环境的污染;其次这些电源不能(或少)对电网产生污染,国际电工委员会(IEC)对此制定了一系列标准,如IEC555、IEC917、IECl000等。事实上,许多功率电子节电设备,往往会变成对电网的污染源:向电网注入严重的高次谐波电流,使总功率因数下降,使电网电压耦合许多毛刺尖峰,甚至出现缺角和畸变。20世纪末,各种有源滤波器和有源补偿器的方案诞生,有了多种修正功率因数的方法。

总而言之,电力电子及开关电源技术因应用需求不断向前发展,新技术的出现又会使许多应用产品更新换代,还会开拓更多更新的应用领域。开关电源高频化、模块化、数字化、绿色化等的实现,将标志着这些技术的成熟,实现高效率用电和高品质用电相结合。这几年,随着通信行业的发展,以开关电源技术为核心的通信用开关电源,仅国内有20多亿人民币的市场需求,吸引了国内外一大批科技人员对其进行开发研究。开关电源代替线性电源和相控电源是大势所趋,因此,同样具有几十亿产值需求的电力操作电源系统的国内市场正在启动,并将很快发展起来。还有其它许多以开关电源技术为核心的专用电源、工业电源正在等待着人们去开发。

参考文献:

[1]林渭勋:浅谈半导体高频电力电子技术,电力电子技术选编,浙江大学,384-390,1992。

[2]季幼章:迎接知识经济时代,发展电源技术应用, 电源技术应用,N0.2,l998。

第2篇

当前,电力电子作为节能、节才、自动化、智能化、机电一体化的基础,正朝着应用技术高频化、硬件结构模块化、产品性能绿色化的方向发展。在不远的将来,电力电子技术将使电源技术更加成熟、经 济、实用,实现高效率和高品质用电相结合。

1. 电力电子技术的发展

现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。

1.1 整流器时代

大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。

1.2 逆变器时代

七十年代出现了世界范围的能源危机,交流电机变频惆速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。

1.3 变频器时代

进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能更加完善可靠,而且使现代电子技术不断向高频化发展,为用电设备的高效节材节能,实现小型轻量化,机电一体化和智能化提供了重要的技术基础。

2. 现代电力电子的应用领域

2.1 计算机高效率绿色电源

高速发展的计算机技术带领人类进入了信息社会,同时也促进了电源技术的迅速发展。八十年代,计算机全面采用了开关电源,率先完成计算机电源换代。接着开关电源技术相继进人了电子、电器设备领域。

计算机技术的发展,提出绿色电脑和绿色电源。绿色电脑泛指对环境无害的个人电脑和相关产品,绿色电源系指与绿色电脑相关的高效省电电源,根据美国环境保护署l992年6月17日“能源之星"计划规定,桌上型个人电脑或相关的外围设备,在睡眠状态下的耗电量若小于30瓦,就符合绿色电脑的要求,提高电源效率是降低电源消耗的根本途径。就目前效率为75%的200瓦开关电源而言,电源自身要消耗50瓦的能源。

2.2 通信用高频开关电源

通信业的迅速发展极大的推动了通信电源的发展。高频小型化的开关电源及其技术已成为现代通信供电系统的主流。在通信领域中,通常将整流器称为一次电源,而将直流-直流(DC/DC)变换器称为二次电源。一次电源的作用是将单相或三相交流电网变换成标称值为48V的直流电源。目前在程控交换机用的一次电源中,传统的相控式稳压电源己被高频开关电源取代,高频开关电源(也称为开关型整流器SMR)通过MOSFET或IGBT的高频工作,开关频率一般控制在50-100kHz范围内,实现高效率和小型化。近几年,开关整流器的功率容量不断扩大,单机容量己从48V/12.5A、48V/20A扩大到48V/200A、48V/400A。

因通信设备中所用集成电路的种类繁多,其电源电压也各不相同,在通信供电系统中采用高功率密度的高频DC-DC隔离电源模块,从中间母线电压(一般为48V直流)变换成所需的各种直流电压,这样可大大减小损耗、方便维护,且安装、增加非常方便。一般都可直接装在标准控制板上,对二次电源的要求是高功率密度。因通信容量的不断增加,通信电源容量也将不断增加。

2.3 直流-直流(DC/DC)变换器

DC/DC变换器将一个固定的直流电压变换为可变的直流电压,这种技术被广泛应用于无轨电车、地铁列车、电动车的无级变速和控制,同时使上述控制获得加速平稳、快速响应的性能,并同时收到节约电能的效果。用直流斩波器代替变阻器可节约电能(20~30)%。直流斩波器不仅能起调压的作用(开关电源), 同时还能起到有效地抑制电网侧谐波电流噪声的作用。

通信电源的二次电源DC/DC变换器已商品化,模块采用高频PWM技术,开关频率在500kHz左右,功率密度为5W~20W/in3。随着大规模集成电路的发展,要求电源模块实现小型化,因此就要不断提高开关频率和采用新的电路拓扑结构,目前已有一些公司研制生产了采用零电流开关和零电压开关技术的二次电源模块,功率密度有较大幅度的提高。

2.4 不间断电源(UPS)

不间断电源(UPS)是计算机、通信系统以及要求提供不能中断场合所必须的一种高可靠、高性能的电源。交流市电输入经整流器变成直流,一部分能量给蓄电池组充电,另一部分能量经逆变器变成交流,经转换开关送到负载。为了在逆变器故障时仍能向负载提供能量,另一路备用电源通过电源转换开关来实现。

现代UPS普遍了采用脉宽调制技术和功率M0SFET、IGBT等现代电力电子器件,电源的噪声得以降低,而效率和可靠性得以提高。微处理器软硬件技术的引入,可以实现对UPS的智能化管理,进行远程维护和远程诊断。

目前在线式UPS的最大容量已可作到600kVA。超小型UPS发展也很迅速,已经有0.5kVA、lkVA、2kVA、3kVA等多种规格的产品。

2.5 变频器电源

变频器电源主要用于交流电机的变频调速,其在电气传动系统中占据的地位日趋重要,已获得巨大的节能效果。变频器电源主电路均采用交流-直流-交流方案。工频电源通过整流器变成固定的直流电压,然后由大功率晶体管或IGBT组成的PWM高频变换器, 将直流电压逆变成电压、频率可变的交流输出,电源输出波形近似于正弦波,用于驱动交流异步电动机实现无级调速。

国际上400kVA以下的变频器电源系列产品已经问世。八十年代初期,日本东芝公司最先将交流变频调速技术应用于空调器中。至1997年,其占有率已达到日本家用空调的70%以上。变频空调具有舒适、节能等优点。国内于90年代初期开始研究变频空调,96年引进生产线生产变频空调器,逐渐形成变频空调开发生产热点。预计到2000年左右将形成。变频空调除了变频电源外,还要求有适合于变频调速的压缩机电机。优化控制策略,精选功能组件,是空调变频电源研制的进一步发展方向。

2.6 高频逆变式整流焊机电源

高频逆变式整流焊机电源是一种高性能、高效、省材的新型焊机电源,代表了当今焊机电源的发展方向。由于IGBT大容量模块的商用化,这种电源更有着广阔的应用前景。

逆变焊机电源大都采用交流-直流-交流-直流(AC-DC-AC-DC)变换的方法。50Hz交流电经全桥整流变成直流,IGBT组成的PWM高频变换部分将直流电逆变成20kHz的高频矩形波,经高频变压器耦合, 整流滤波后成为稳定的直流,供电弧使用。

由于焊机电源的工作条件恶劣,频繁的处于短路、燃弧、开路交替变化之中,因此高频逆变式整流焊机电源的工作可靠性问题成为最关键的问题,也是用户最关心的问题。采用微处理器做为脉冲宽度调制(PWM)的相关控制器,通过对多参数、多信息的提取与分析,达到预知系统各种工作状态的目的,进而提前对系统做出调整和处理,解决了目前大功率IGBT逆变电源可靠性。

国外逆变焊机已可做到额定焊接电流300A,负载持续率60%,全载电压60~75V,电流调节范围5~300A,重量29kg。

2.7 大功率开关型高压直流电源

大功率开关型高压直流电源广泛应用于静电除尘、水质改良、医用X光机和CT机等大型设备。电压高达50~l59kV,电流达到0.5A以上,功率可达100kW。

自从70年代开始,日本的一些公司开始采用逆变技术,将市电整流后逆变为3kHz左右的中频,然后升压。进入80年代,高频开关电源技术迅速发展。德国西门子公司采用功率晶体管做主开关元件,将电源的开关频率提高到20kHz以上。并将干式变压器技术成功的应用于高频高压电源,取消了高压变压器油箱,使变压器系统的体积进一步减小。

国内对静电除尘高压直流电源进行了研制,市电经整流变为直流,采用全桥零电流开关串联谐振逆变电路将直流电压逆变为高频电压,然后由高频变压器升压,最后整流为直流高压。在电阻负载条件下,输出直流电压达到55kV,电流达到15mA,工作频率为25.6kHz。

2.8 电力有源滤波器

传统的交流-直流(AC-DC)变换器在投运时,将向电网注入大量的谐波电流,引起谐波损耗和干扰,同时还出现装置网侧功率因数恶化的现象,即所谓“电力公害”,例如,不可控整流加电容滤波时,网侧三次谐波含量可达(70~80)%,网侧功率因数仅有0.5~0.6。

电力有源滤波器是一种能够动态抑制谐波的新型电力电子装置,能克服传统LC滤波器的不足,是一种很有发展前途的谐波抑制手段。滤波器由桥式开关功率变换器和具体控制电路构成。与传统开关电源的区别是:(l)不仅反馈输出电压,还反馈输入平均电流; (2)电流环基准信号为电压环误差信号与全波整流电压取样信号之乘积。

2.9 分布式开关电源供电系统

分布式电源供电系统采用小功率模块和大规模控制集成电路作基本部件,利用最新理论和技术成果,组成积木式、智能化的大功率供电电源,从而使强电与弱电紧密结合,降低大功率元器件、大功率装置(集中式)的研制压力,提高生产效率。

八十年代初期,对分布式高频开关电源系统的研究基本集中在变换器并联技术的研究上。八十年代中后期,随着高频功率变换技术的迅述发展,各种变换器拓扑结构相继出现,结合大规模集成电路和功率元器件技术,使中小功率装置的集成成为可能,从而迅速地推动了分布式高频开关电源系统研究的展开。自八十年代后期开始,这一方向已成为国际电力电子学界的研究热点,论文数量逐年增加,应用领域不断扩大。

分布供电方式具有节能、可靠、高效、经济和维护方便等优点。已被大型计算机、通信设备、航空航天、工业控制等系统逐渐采纳,也是超高速型集成电路的低电压电源(3.3V)的最为理想的供电方式。在大功率场合,如电镀、电解电源、电力机车牵引电源、中频感应加热电源、电动机驱动电源等领域也有广阔的应用前景。

3. 高频开关电源的发展趋势

在电力电子技术的应用及各种电源系统中,开关电源技术均处于核心地位。对于大型电解电镀电源,传统的电路非常庞大而笨重,如果采用高顿开关电源技术,其体积和重量都会大幅度下降,而且可极大提高电源利用效率、节省材料、降低成本。在电动汽车和变频传动中,更是离不开开关电源技术,通过开关电源改变用电频率,从而达到近于理想的负载匹配和驱动控制。高频开关电源技术,更是各种大功率开关电源(逆变焊机、通讯电源、高频加热电源、激光器电源、电力操作电源等)的核心技术。

3.1 高频化

理论分析和实践经验表明,电气产品的变压器、电感和电容的体积重量与供电频率的平方根成反比。所以当我们把频率从工频50Hz提高到20kHz,提高400倍的话,用电设备的体积重量大体下降至工频设计的 5~l0%。无论是逆变式整流焊机,还是通讯电源用的开关式整流器,都是基于这一原理。同样,传统“整流行业”的电镀、电解、电加工、充电、浮充电、电力合 闸用等各种直流电源也可以根据这一原理进行改造, 成为“开关变换类电源”,其主要材料可以节约90%或更高,还可节电30%或更多。由于功率电子器件工作频率上限的逐步提高,促使许多原来采用电子管的传统高频设备固态化,带来显著节能、节水、节约材料的经济效益,更可体现技术含量的价值。

3.2 模块化

模块化有两方面的含义,其一是指功率器件的模块化,其二是指电源单元的模块化。我们常见的器件模块,含有一单元、两单元、六单元直至七单元,包括开关器件和与之反并联的续流二极管,实质上都属于“标准”功率模块(SPM)。近年,有些公司把开关器件的驱动保护电路也装到功率模块中去,构成了“智能化”功率模块(IPM),不但缩小了整机的体积,更方便了整机的设计制造。实际上,由于频率的不断提高,致使引线寄生电感、寄生电容的影响愈加严重,对器件造成更大的电应力(表现为过电压、过电流毛刺)。为了提高系统的可靠性,有些制造商开发了“用户专用”功率模块(ASPM),它把一台整机的几乎所有硬件都以芯片的形式安装到一个模块中,使元器件之间不再有传统的引线连接,这样的模块经过严格、合理的热、电、 机械方面的设计,达到优化完美的境地。它类似于微电子中的用户专用集成电路(ASIC)。只要把控制软件写入该模块中的微处理器芯片,再把整个模块固定在相应的散热器上,就构成一台新型的开关电源装置。由此可见,模块化的目的不仅在于使用方便,缩小整机体积,更重要的是取消传统连线,把寄生参数降到最小,从而把器件承受的电应力降至最低,提高系统的可靠性。另外,大功率的开关电源,由于器件容量的限制和增加冗余提高可靠性方面的考虑,一般采用多个独立的模块单元并联工作,采用均流技术,所有模块共同分担负载电流,一旦其中某个模块失效,其它模块再平均分担负载电流。这样,不但提高了功率容量, 在有限的器件容量的情况下满足了大电流输出的要求, 而且通过增加相对整个系统来说功率很小的冗余电源模块,极大的提高系统可靠性,即使万一出现单模块故障,也不会影响系统的正常工作,而且为修复提供充分的时间。

3.3 数字化

在传统功率电子技术中,控制部分是按模拟信号来设计和工作的。在六、七十年代,电力电子技术完全是建立在模拟电路基础上的。但是,现在数字式信号、数字电路显得越来越重要,数字信号处理技术日趋完善成熟,显示出越来越多的优点:便于计算机处理控制、避免模拟信号的畸变失真、减小杂散信号的干扰(提高抗干扰能力)、便于软件包调试和遥感遥测遥调,也便于自诊断、容错等技术的植入。所以,在八、九十年代,对于各类电路和系统的设计来说,模拟技术还是有用的,特别是:诸如印制版的布图、电磁兼容(EMC) 问题以及功率因数修正(PFC)等问题的解决,离不开模拟技术的知识,但是对于智能化的开关电源,需要用计算机控制时,数字化技术就离不开了。

3.4 绿色化

电源系统的绿色化有两层含义:首先是显著节电, 这意味着发电容量的节约,而发电是造成环境污染的重要原因,所以节电就可以减少对环境的污染;其次这些电源不能(或少)对电网产生污染,国际电工委员会(IEC)对此制定了一系列标准,如IEC555、IEC917、IECl000等。事实上,许多功率电子节电设备,往往会变成对电网的污染源:向电网注入严重的高次谐波电流,使总功率因数下降,使电网电压耦合许多毛刺尖峰,甚至出现缺角和畸变。20世纪末,各种有源滤波器和有源补偿器的方案诞生,有了多种修正功率因数的方法。这些为2l世纪批量生产各种绿色开关电源产品奠定了基础。

第3篇

【关键词】通信技术;远程应用;电力自动化

中图分类号:TP39

电网系统与电力调度自动化的运行,要求在电力系统出现问题的时候,第一时间做出反应,在最短时间之内做出处理。现代电话通信技术在电力自动化的运用中便成了一种不可或缺的手段,因为它本身的稳定、安全、准确、迅速特性使得它在电力自动化中的应用,目前它也是目前电力自动化在生产运行中实行远程监督与维护的理想手段。

一、电话技术的作用

现在的电网发展中,很多变电站出现无人值班现象[1],其中调度工作起着很大起的作用。变电站的自动化设备是需要不断地工作的,但是会出现一些原因,导致自动化设备的数据出现中断,这样就严重影响了调度员调度以及集控站值班员的操作与观察。日常问题的出现,需要及时的自动化维修,这样的话就需要抢修人员亲临现场进行抢修工作,一系列的检修、诊断、障碍处理,处理这些问题需要花费往返的人力精力和财力,如果在传输过程中又出现问题,就又要维修人员再次返回现场,浪费时间、浪费人力资源,处理一旦不及时,就会使得电力系统的工作效率低下。有关故障处理统计数据表明,电力自动化设备发生死机的现象频率很高,这使得维修人员必须亲临现场对设备进行重启,使之再投入工作。现在,电力自动化系统的远程诊断方式有两种:第一,利用自动化系统的网络进行自身诊断,达到远程的测试和诊断目的,如果遇上电力系统瘫痪死机,就无法使远程的维护功能得到有效运用;第二,使用公用或者专用的通信网络通道来达到诊断的效果,这样就需要组建主分站测试诊断装备,这导致系统投资大、维护量大的负面影响出现。因此,必须寻找一种简易稳定的远程维护系统,从而达到远程的操作。

二、最便捷、少投资的电话遥控成本

我国的电话运用较为普遍,各种系统的相互配合也比较常见,例如电话预定、电话充值、电弧购物、电话通讯远程遥控系统[2]。电话远程遥控也已广泛运用在各个行业当中,比如汽车短信报警、电器遥控等等,虽说如此,目前还是有一定的距离,它没有完全发挥电话远程控制的潜力。电话远程控制在电力系统中的运用仅仅是一个尝试,不过可以借鉴其他先进经验,再针对性上具有较大的突破,比如来电显示、DTMF拨号编码技术、短信技术、单片机的智能控制技术方面,可以利用编码控制原理和信息传送技术让远程控制装置实现智能化和互动化。毫无地域限制的无限短信通信不仅灵活方便,并且比较廉价。运用短信来报警、远程控制工业是个很不错的途径,所以也可以尝试运用到电力自动化中的远程维护上。

三、基础技术的运用

在电力自动化过程中,电话控制模块采用来电显示、短信、DTMF拨号编码、单片机智能控制等技术的运用,合理地利用各种网络途径,实现远程信息互动、远程控制、远程诊断。远程电话的控制核心模式是双音多频解码和单片机。配合遥控驱动部件、手机电路、状态接口采集,使得在不同的场合下运用手机、电话进行远程的电站自动化设备的诊断和复位等,并实现多路的智能控制途径。

电话远程控制的安全防范主要是使用电话号码过滤器,预先在远程电话控制系统中设置几部电话和手机为有权用户,使它具有一定的“身份”功能。实现访问与控制的安全,拦截陌生号码。此外,在模式中设立指令内容,实现短信过滤功能,如果接收到的指令不同于预设的指令,那么就难以驱动系统,这样就可以防止错误发生。

四、电话通信遥控功能实现

电力系统的电话控制模块,符合实际需求和电网自动化的特点,其功效如下:

1.主机控制机能:电力远程控制系统的主站给远端的控制模块发送指令,对一些开关的状态测试和查询、通道的诊断以及开关机。电力远程控制系统的控制模块分为主机和分站的维修人员[3]。

2.短信控制功能:在系统中,有权人员才可以通过手机发送短信给远端,他们可以进行一些控制方面的查询、环道的诊断、开关机等等。这种模块就是利用信息进行沟通过信息。

3.电话控制功能:具有一定的“身份”的用户,运用拨号或者是振铃对远端进行开关机控制以及诊断等。

4.安全功能:对一些非“身份”的用户具有拦截功能,就防止了其他信息的干扰。

五、结语

自动化远程设备的电话通讯控制,符合电网调度的自动化安全需求和电力系统的供电保障,属于一种自动化设备维护及智能处理的简易辅助手段,对电力企业的设备自动化管理的维护起到推动作用。节省资源、安全可靠便捷的特点,使得电力自动化系统能够更快捷、准确地使故障得到顺利解决。

参考文献:

[1]郑晓丽.移动通信网中的认证与密匙建立协议[J].无线通信技术,2010(2).

第4篇

【关键词】 电力自动化系统 现代通信技术 探究

随着电力系统自动化水平的提高,对于通信组网的需求也在不断的增加,电力自动化系统通过现代通信技术实现远程监督和管理逐渐成为电力自动化系统建设的重点内容,现代通信技术的应用能够进一步的促进电力系统的自动化水平,极大的提升电网工作管理的效率。基于这一现象,我们要充分的了解当前电网建设的现状,以及现代通信技术在电力系统的应用的发展背景和历程,分析现代通信技术的优势以及可行性,从而推动现代通信技术在电力自动化系统中的应用水平,促进电力自动化系统的健康发展。

一、电力自动化系统中现代通信技术的应用背景

随着现代通信技术的不断成熟也为电力行业的应用提供了基础,考虑到电力系统行业的实际需求,我们分析了现代通信技术的应用背景如下:

1、来自电力系统自动化的需求。随着电力系统的发展,电力系统功能涉及的范围越来越广,而且功能也越来越复杂,这给电力系统的自动化管理增加了难度。电力系统对于通信的需求也越来越高,在这样的需求下,只有使用现代化的通信技术,完成电力系统的通信和联网,才能够满足当前电力系统的需求,这也是现代通信技术的发展的重要内因。

2、来自电力系统的客观要求。电力自动系统设备数量逐渐的增多,自动化管理过程中对于通信的需求日益频繁,先要满足这种需求,单纯的依靠外部的通信手段已经无法满足其客观的需求,基于电力系统自动化管理当中的通信模块,逐渐的被独立出来逐渐的形成了电力自动化系统中的现代通信技术的应用。

3、电力行业技术发展的整体趋势。随着电力行业中电网组建的不断加快,电网建设和电力自动化系统的实际应用,和其他新兴的技术一样现代化的通信技术的也在电力行业的整体发展中得到了重要的运用,这不但得益于电网新技术的进步,也是电网组建的重要需求,现代通信技术也满足了电网发展的整体趋势。

二、在电力自动化系统中现代通信技术的研究价值

现代通信技术和电力自动化系统的结合有着重要的实践研究价值。具体表现在以下三个方面:

首先是现代通信技术是电力自动化系统发展的重要推动力,特别是考虑到电力系统的逐渐的走向智能化的发展方向,要实现对电力设备和系统的远程自动化管理,必须通过现代通信技术实现系统之间的联网,并借助现代化的管理手段和方法全面的提高其自动化的水平,因此研究电力系统中的通信技术势在必行。

其次是研究电力系统能够反向促进现代通信技术的发展水平,随着现代通信技术不断发展,其在各个领域得到了快速的发展,无论是理论还是实际应用技术都获得了突破性的进展,电力系统的复杂性和高系统结构也考验了通信系统应用能力和范围,能够促进通信技术的成熟和完善。

最后是能偶极大的促进电力系统的稳定性和可靠性,通过先进的网络通信和自动化控制技术的结合,能够为电力企业提供现代化的远程管理和在线监控,确保电力系统的稳定性和可靠性,从而提供更加优质的电力服务。

三、电力自动化系统中现代通信技术的应用与发展

随着国家对于现代化电网建设的重视,先进的通信网络已经得到了一定的应用,为此我们分析现代通信技术的应用现状,分析其发展的历程,通信技术将来的应用提供参考。其应用和发展经历了一下几个重要的阶段:

首先是单通信阶段,即将简单的通信模组嵌入到电力自动化系统中,由于当时的电网较为简单,电力设备和系统的数量较少,电力系统之间的通信需求量比较少,通信技术只是作为一个补充技术得到应用。

其次是分组通信的阶段,随着电力系统越来越复杂,人们开始认识到了电力系统中通信的重要性,极大的促进了通信技术的应用和发展,随着技术融合和系统升级的不断推进,逐渐的形成了固定分组的通信模式,相比于传统的电力系统管理,通信技术得到了一定的重视。最后是全面的网络通信阶段,借助互联网、移动通信、光纤通信等现代化的通信技术和手段,充分的应用到了电力自动化系统中,全面的提高了电力系统的通信水平。

四、结语

现代化的电力系统健身本身就是靠先进的网络通信、自动化控制、微机继电保护等多种先进的技术综合完成的,能够为用户提供远程的自动化的监控和管理,我们分析了通信技术在应用价值和发展,能够帮助我们更加清晰的认识现代通信技术在电力自动化系统应用和发展。

参 考 文 献

第5篇

1 对现代企业和电子商务的概述 

1.1 商务视角下视角下的电商技术 

国际标准化组织对电子商务概念的解析是:电子商务技术是企业和企业之间、企业与客户之间进行信息沟通与交换的一种现代信息技术。从现代企业管理的角度而言,电子商务也可以这样理解:一方面,电子商务技术是当代信息技术(IT),尤其是计算机和通信技术在现代企业管理中运用的一种体现,电子商务在度对企业生产、销售和管理的过程直接参与;另一方面,电子商务技术是建立在上述IT技术基础之上的企业管理思想和经营手段的革新。电子商务技术不仅从技术上给企业带来深刻变化,更重要的是对企业经营者的经营模式发生了深刻的变革。 

1.2 电商技术在我国企业管理中的运用状况 

电子商务技术在全球的发展已经有十几年了,对于我国而言,电子商务技术在转变经济发展方式,促进流通现代化中发挥着重要作用。实际上,电子商务技术在我国企业中的运用情况参差不齐,据2012年国家统计局对30.8万家企业的电子商务情况进行调查的结果显示:2012年,我国电子商务广泛渗透国民经济各行各业,企业电子商务交易额同比增长17.6%,但参与电子商务交易活动的企业不到一成,而且企业电子商务在地区间发展存在不平衡,外商投资企业电子商务运用水平最高。 

2 现代企业管理中的电商技术三级运用 

2.1 初级电子商务运用模式 

初级电子商务运用模式即企业自身的电子商务运用模式,指的是一个企业为了顺应信息化潮流展,在企业内部所运用的电子商务模式。它以企业自身的设备信息化委前提,以针对内部的信息化运营和管理为目标,通过内部网络实现员工之间的交流和沟通。 

2.2 中级电子商务运用模式 

该模式指的是,两个或两个以上的企业之间进行信息交流的电子商务模式。它与传统的企业间交流不同,不需要人员间直接见面沟通,二是通过互联网络的使用,实现两个或两个企业之间的信息交换,从而促成交易或对话。 

2.3 高级电子商务运用模式 

高级电子商务运用模式指的是面向广大消费者的模式。一般来说,企业对消费者的电子商务运用主要包括三个方面:包括信息服务,网上支付和社区服务。 

 

3 现代企业管理中对电子商务技术的运用效果 

3.1 对企业组织架构的效果 

电子商务技术的运用对企业组织管理的效果是多面方面的。一是促使企业财务管理从从单机财务数据处理方式集成化的财务数据处理方式发展。二是,电子商务对企业的人力资源管理的效果也颇为显著,通过网上招聘招纳人才不仅节约企业成本,也突破了招聘范围的限制,可谓一举两得。 

3.2 对生产和销售的效果 

电子商务技术使得交易不受地域效果,交易机会大大增加。一是,促进企业生产的现代化,通过建立计算机集成系统实现对生产过程的远程控制电子商务技术对企业销售管理的效果也十分显著;二是,与传统么媒体广告形式不同的是,在电子商务环境下,企业的广告投放更加便利,且可以通过互联网面向全世界消费者。 

4 现代企业管理中对电商技术运用的方案 

现代企业的电子商务技术运用已经成为不可阻挡的趋势和潮流,多数企业已经意识到电子商务技术对于企业管理的重要性。然而,值得注意的是,大多数企业对企业如何有效利用电子商务技术缺乏系统的认识以及有效的操作方式。 

4.1 从组织上看:改变组织架构才能推进电子商务的进行 

传统企业的组织架构已经很难适应电子商务环境的发展,因此必须改变企业组织架构以适应电子商务的要求。具体做法是,增加技术支持部门和数据采集部门以及减少某些中问信息传递环节以及某些销售渠道,促使企业的组织结构向扁平化的方向发展。与组织结构变化想对应的是,企业的管理观念应随之变化,只要具备现代化的管理后企业的管理理念才能使企业的组织架构革新更加顺畅和到位。 

4.2 从硬件上看:企业要加强信息化的基础建设 

企业对电子商务技术的运用离不开信息设备的支持,因此企业发展电子商务的硬件前提是建立完善的企业信息管理系,即在国家基础设施的基础上,在企业内部建立适应电子商务发展的营销系统、财务系统和人力资源系统。在硬件设施的前提上,企业依据国家规章和法律,可以小规模地率先在标准化程度高或者规模不算大的商品或服务方面开展此类活动,以图为企业全面发展增加助力。 

5 结论 

在本文中,我们从企业管理的角度阐述了电子商务的概念,研究了电子商务技术对现代企业经营管理的效果以及现代企业中对电子商务运用的主要模式和对策。作为一种发展潜力巨大的电子模式,在企业管理中对电子商务技术的使用,不仅可以实现企业现代化管理进程,还能够促进企业销售业绩的增长,从而实现企业的全面发展。可以说,任何一个现代企业要实现可持续发展都必须顺应时代潮流,将有效利用电子商务技术提升到企业战略的高度。 

 

参考文献 

[1]李莉.论电子商务环境下企业管理新模式[J].企业经济,2008(5). 

[2]Gray P.Schneider,james T.Perry.成栋等译.电子商务[M].北京:机械工业出版社,2012. 

[3]蓝伯雄.电子商务时代的供应链管理[M].北京:中国管理科学出版社,2013. 

第6篇

1.1回顾电力电子技术的发展历程

电力电子技术的发展历程可具体划分为三个时期,即整流器时代、逆变器时代和变频器时代。首先,整流器时期的电力电子技术发展主要表现为大规模的工业用电,它的用电来源主要是交流发电机,消费形式以直流电为主,比如有色金属的电解、内燃机车的牵引以及轧钢中的直流电等。硅整流器通过将直流电转化为工业用电而被广泛应用于配电和输电领域,这在六七十年代的中国随处可见。其次,逆变器时代的电力电子技术发展遭遇了严重的能源危机,其波及范围之广使得整流器的发展不再适应电能企业的使用需求,以交流电为主的逆变器时代应运而生。逆变器时代以晶闸管、晶体管以及晶闸管器件作为时展的主流,在高压直流输出的过程中实现了对动态功率的有效补偿。然而这时的使用范围还仅仅局限于中低频领域,使用过程中的效率较为偏低。再者,八十年代的变频器时代实现了大规模和超大规模集成电路的发展与应用,这不仅电子应用领域的显著创新,同时也为后期现代电力电子技术的发展提供了必要的技术借鉴。变频器时代还对电力的精细加工技术进行了完善,全控型功率器件的出现实现了电力电子技术的高频化发展,使得现代电力电子技术转化成为一种可能。功率半导体市场逐渐被变频器件取代,这一革新不仅提升了变频调速的使用频率,在小型轻量化技术装备方面也有了显著进步。

1.2当前电力电子技术的应用领域

电力电子技术的发展核心控制体系在于电能器件的有效转换,作为一种现代技术,电力电子技术的主要功能不仅包括了逆变、整流、变频等基本方面,除此以外还涉及到斩波和智能开关等方面的内容。通过对电网工频电能的转化来达到不同的使用目的,以此适应现代化生产对电力电子技术的使用需求。具体应用方面,其应用领域主要包括了三大方面:其一,在变频器作用下对微电子技术及控制技术进行有效整合,将固有不变的交流电转变为可换可调的可变式交流电,以此达到无级调速的目的,这对电能资源的节约显然极为有利。其二,在开关电源和供电电源方面现代电力电子技术也有着自身的使用功能,类似变频电源、焊接电源、充电电源、照明电源等都为现代化电力系统的完善提供了切实可行的技术指导。其三,一些发电系统或是交流输电技术也体现出现代电力电子技术的应用意义,水力发电、风力发电、配电与用电系统的完善等都和电子系统的应用之间有着密切联系。

2现代电力电子技术的发展趋势探讨

2.1电力电子技术的发展趋势

电子电子技术归根结底是对电源技术的研究,电源技术不仅是电力电子技术研究的核心,一定程度上开光电源技术的发展也预示着现代电力电子技术今后的发展走向。从发展趋势来看,现代电力电子技术的发展趋势可概括为以下几方面特点:第一,现代电力电子技术的集成化与模块化特征。这一特征主要表现在现代电力电子技术的功率器件和电源单元两个方面,从微小器件组成来实现电子器件的智能化辨别与使用。这样的模块功率不仅有效控制了器件的体积,在设计与制造方面也形成了显著的模块化特征。电力电子技术的模块化发展其核心目的旨在降低器件的电应力,从安全性与可靠性角度提升电力系统的使用性能。第二,现代电力电子技术的高频化特征。从理论分析及实践验证的双重角度不难看出,无论是变压器的电感还是电容体积在供电频率方面都呈现出一定的反比例趋势,因此体积的减小必然会导致电子技术的高频化呈现。从这个角度来看,全控型电子器件的问世已然标志着现代电子与电力技术率先实现了自身的高频化转换。第三,现代电力电子技术的全控化与数字化特征。全控化电力电子技术的革新突破了原有电力电子器件在使用功能方面的限制,降低了关断换流电路可能造成的危险,从根本上保障了电力系统在使用过程中的安全性。数字化特征则主要表现在现代电力电子技术的高频斩波以及谐振变换等方面,从弱电领域拓展了电力电子技术的发展渠道,提前实现了控制技术的集成化。第四,现代电力电子技术的绿色化特征。这里的绿色化特征既包括了环境污染问题的控制,又涉及到必要的电网污染源问题,是当前电力电子技术在发展过程中亟需解决的重要问题。发电容量的控制从根本上减少了发电对环境造成的污染,与此相关的污染过滤器或是电能补偿系统等都是当前电力电子技术向绿色化迈进的有力证据。具体的电力电子技术应用方面,则主要表现为四大革新趋势:其一,太阳能发电技术的应用。太阳能发电技术为普通家庭提供了足够的电能使用空间,成为了可再生资源的有效传播途径之一。其二,燃料电池发电技术。燃料电池的发电装置主要是将其中的化学能转化为可使用的电能,节能省电,鲜少产生环境污染问题。其三,交流输电技术的应用。作为一种新型电力系统出现的交流输电技术实现了对电网资源重新分配与利用,保障了电力系统的稳定性。其四,现代电力电子技术中的储存与质量控制技术。储存技术的使用在于提升电力系统本身的电力储备功能,而质量控制技术则在于从供电质量角度提高电力产品的使用效率。

2.2现代电力电子技术的应用展望

关于现代电力电子技术的应用展望,可从如下几方面得以体现:第一,从节能性角度提升电机系统的使用性能,可从专用电机的设计或是控制设备的完善等方面来提升整体电力系统的使用效率;第二,中高压直流输电系统的运用也是今后电力电子技术发展的必然趋势,这一系统本身就具备了低污染和低能耗的特点;第三,当前社会发展进程中充电站网络的构建或是电动车辆的普及已经逐渐成为现代电力电子技术发展进程中积极完善与改革的内容,以电动汽车为代表的环保电力问题逐渐成为一个时代课题。至于当前城市建设过程中充电网络的配备问题基本尚处于起步阶段,无论是实际应用领域还是理论构建领域都还存在许多值得研究和讨论的问题,但无疑其发展空间是极为广阔的;第四,关于电力系统中电能储备装置的设置与超导线的使用也将成为电力电子技术亟需解决的问题之一,从根本上解决电能储备问题势必将对电力系统的持续发展产生积极而深远的影响。然而面对电能储备过程中存在的诸多问题,电力系统设计者需要从控制技术与存储技术的双重层面来体现储能装置的有效性,对于其中可能存在的不合理问题提出切实有效的解决或改进对策。

3结束语

第7篇

综合性开放式实验平台的结构与设计方法

结合电力电子技术的发展趋势,基于现代电力电子器件的电能变换与控制实验平台一方面与现有电力电子技术及电机实验装置进行对接,实现对现有实验装置的升级和改进,挖掘现有实验平台的资源潜力;另一方面作为独立的电能变换与控制系统,将现代电力电子器件应用于电力电子新技术中,从广度和深度两方面扩充实验内容,比如从全控型器件的应用扩展到复合型器件、智能型器件的应用,从器件特性和工作原理的验证性实验扩展到电动机驱动、电阻网络控制以及电能回馈设计等探究性实验。基于现代电力电子器件的电能变换与控制实验平台的设计如图1所示。其设计思想遵循三个方面的原则:一是综合性,可以融合自动控制原理、可编程控制器以及电机学等课程教学资源。在实验平台中不仅要体现单一学科的实践和应用,而是要树立学生系统的观念,将多门学科的专业知识综合应用;二是开放式,留有兼容与升级的接口。如其中的实验平台中电能变换模块的控制器单元,在设计时考虑平台的扩容与升级,为今后功能扩展以及更换预留接口;三是模块化,分级模块化,不仅能够在器件的驱动使用上更加方便,而且有利于维修。

项目采用模块化设计方法,选用多种现代电力电子器件开发一种电能变换与控制实验平台。该实验平台由电力电子器件、驱动模块、保护模块、脉冲宽度调制模块以及电能输入和输出接口模块等组成,通过对输出电能参数的控制,可以改变电动机等运动负荷或电阻网络等静止负荷的工作特性,如图1所示。电能变换与控制平台在电力电子应用系统(如图1)中,起着衔接原始的供电电源与最终负载之间的桥梁作用,把电源提供的粗电(coarsepower)转换成符合负载要求的精电(refinedpower)。其中,精电的电能质量指标主要取决于电能变换与控制平台的特性。研究成果的具体指标为:选用现代电力电子器件的覆盖范围,包括全控型、复合型与智能型电力电子器件的典型代表,如MOSFET、IGBT、MCT、IGCT和IEGT等。电力电子器件的驱动电路和保护电路的功能。由于电力电子器件是以弱电信号控制强电能量的形式,驱动电路和保护电路是不可或缺的组成部分。实验平台需对每一电力电子器件设计驱动电路和保护电路。能够实现电能的变换与控制。本实验平台的重要应用领域是对电能进行变换和控制。作为基本功能实现与否的评价标准,是检测该实验平台可否实现电能的变换与控制。电力电子器件的控制方法是通过PWM脉冲序列控制。作为普遍适用的一种重要控制方法,PWM脉冲序列发生电路为各器件提供控制信号。与现有实验平台的兼容性。拟开发的实验平台具备与有源负荷及无源负荷的接口,能够驱动无源负荷及有源负荷,体现出在负荷匹配方面的灵活性与开放性。

实验平台采用模块化的设计,不仅可以适应现有的实验装置,实现对现有实验装置的升级改进,而且有利于在今后的进一步技术升级。主要研究内容包括:针对所选用的多种现代电力电子器件,包括电力MOSFET、IGBT、MCT、IGCT和IEGT等,分别设计每种器件相应的驱动电路和保护电路。由脉冲宽度调制(PulseWidthModulation,PWM)控制芯片SG3525为核心设计PWM波形发生单元,为各驱动电路提供驱动波形。设计电能的输入、测试与输出接口电路。不仅实现与外部电源和负载接口的匹配,而且可以对变换及控制过程中电能的形式进行检测。电能输出接口的兼容性设计。经过变换与控制的电能,所连接负荷包括有源负载,如电网,及无源负载,如电动机等电动设备或阻抗元件等。实验平台的电磁兼容设计和安全保护设计。一方面满足实验室环境下电磁兼容的需要,另一方面保证在操作过程中的人身、设备安全保护。

以实验平台为基础的教学改革

以现代电力电子器件的电能变换与控制实验平台为基础所进行的实验教学体系改革主要从教学内容、教学方法和考核方法等三个方面进行。目前,国内普遍采用的商业开发实验教学平台可实现的教学内容包括单结晶体管触发电路及单相半波可控整流电路实验、锯齿波同步移相触发电路及单相桥式全控整流及有源逆变电路实验、三相桥式全控整流及有源逆变电路实验、三相交流调压电路实验、直流斩波电路原理实验、GTO和GTR驱动与保护电路实验等,这些实验内容多属验证性实验。而现代电力电子器件的电能变换与控制实验平台不仅能够对电力电子技术课程的现代电力电子器件特性、主要电路拓扑结构的工作过程以及新型控制技术的原理性验证,还能够实现从器件、到结构直至整个系统的整合,给学生提供一个从下到上,包含各个层次的电力电子系统。此外,该实验平台还可以综合自动控制原理、计算机网络和可编程控制器等课程内容,实现以电力电子技术为主的综合性探究实验,体现学科交叉及课程体系间的联系。

在传统的电力电子技术实验教学过程中是以教师讲授为中心,力图对实验平台上的每一个元件或者按钮都讲得很细,力求在实验课上的有限时间内解决所有问题,实际上学生总是处于被动接受的地位,极大地妨碍了其主动性和积极性的发挥,不利于学生素质和能力的培养。与此同时,实验课时压缩客观上迫使实验教学方法进行必要改革。因此,在教学中教师应当在保持实验教学内容的系统性和完整性的同时,力求突出实验内容的重点和难点;革新实验室管理方法,保持实验平台的开放与正常运行,使得学生可以在更大的时间范围内自由选择进行实验操作的可能性。此外,大胆引入学生自学方法,即精心选择一部分内容让学生课外去自学。例如,在讲解电能质量控制装置时,课堂上可以重点介绍并联型电力有源滤波器这一典型装置的工作原理、控制方法和应用设计,而将其他类型的有源滤波器(包括串联型和混合型)等装置技术留给学生去自学[5]。为了督促学生重视实验,除了在实验时教师严格管理、多方教育外,我们在期末考试的试题中引入与实验相关的内容,平时对每位学生的每个实验进行评分,并将实验成绩按一定比例记入课程总成绩。电子实习和课程设计均为独立考核、计算学分,并计入总学分。为使成绩评定公平合理,把学生实习和设计时的表现、成果、测试按照一定比例算得成绩。经实践证明,这些手段和方法确实对教学起到了积极的促进作用。

以实验平台为基础的教学改革的意义

#p#分页标题#e# 把握电力电子器件发展的方向,并适时将电力电子器件及其相应的应用技术引入实践教学环节,一方面能够培养学生始终站在科学发展前沿的自觉精神,有利于提高学生在专业成长历程中的适应能力;另一方面可以更新教师的知识结构,强化教师在知识吸纳与传授过程中的前瞻意识,提高实践教学环节的教学质量。现代电力电子器件,由于出现时间较短,尚存在许多从原理、特性到应用、创新的空间。因此,可以提高探究性实验作为现有实验体系的有机组成部分在实验内容中所占的比例。不仅可以提高学生的创新意识,培养学生动手动脑的能力,而且有助于改进现有实验教学方式和考核方法,促进实验教学的整体改革。通过本实验平台的研究开发,可以实现对现有实验装置中电能变换与控制平台的升级,保留现有实验装置中的电源输出接口以及有源负载和无源负载的输入接口。只需在实验平台中分别对输出接口和输入接口进行兼容性设计,即可替换现有实验装置中的电能变换与控制平台。通过对现有实验装置的改进与升级,可以在原有实验内容的基础上,从深度和广度两方面扩充实验内容,充分发掘现有装置在实验教学中的潜力。

自制实验平台与商业实验平台相比具有先进性,可以更好融合最新的电能变换与控制技术,避免商业开发过程中复杂环节导致的技术相对滞后问题,体现实验平台的先进性,并能更及时跟踪技术发展的趋势。与商业实验平台相比,自行研制的实验平台不仅能够显著降低开发成本,而且由于采用模块化的设计方法,把现代电力电子器件对应的保护电路和驱动电路,与接口电路、变换电路分别作为独立的模块进行设计和制作,还有利于降低应用过程中的维修成本,并可以避免在今后由于大规模更换带来的升级成本。进行实验平台开发的成员长期从事电力电子技术领域的研究与教学工作,对于电力电子技术实验平台和应用项目的开发具有丰富的实践经验。部分教师长期担任电力电子技术的实验指导教师,在实验教学第一线总结了许多学生实验的教学规律。通过实验平台研制与开发,不仅能够将教师的教学思想和教学经验融入实验平台的开发过程中,进一步提高实验教学的质量与效果,而且能够给这一支实验教学队伍提供又一次重要的演练与合作的机会,为今后在更高层次上的可持续性发展奠定坚实的基础。此外,电力电子技术是电气工程学科中的一个最为活跃的分支[6],在保持现有实验设备稳定的基础上,进行适度的技术更新和改造以跟上学科演进的步伐,对于促进新、老专业的建设与发展具有重要的推动作用。

第8篇

【关键词】电力电子技术;电子系统;应用及发展

电力电子技术是计算技术在电力系统中的具体实现,随着电力系统计算机化和信息化的水平不断提高,电力电子技术在电力系统中的作用也越发明显。简单的说,电力电子技术就是通过计算机技术将强电和弱电进行有效的组合,它是计算机应用技术、电子技术、电路技术还有电力控制技术为一体的服务性的技术。笔者就电力电子技术在我国电力系统中的应用和发展进行了重点阐述,说明电力电子技术在电力系统中的重要性。

一、电力电子技术的发展

1.电力电子技术的产生

电力电子技术的产生要追溯到上世纪50年代时期,电力电子技术的产生是以晶闸管的问世为里程碑的。作为现代电力系统中的重要传动技术,电力电子技术在晶闸管的基础上可发出了可控硅整流装置,可控硅整流装置的问世,代表了电力系统传动技术的一次巨大的跨越。从此以后,电能的变换和控制正式步入了电力电子器件构成的变流器时代。所以说,电力电子技术的产生是以可控硅整流装置为标志的。

2.电力电子器件的发展

电力电子技术产生自以后在电力系统中有了十足的发展。第一代的电力电子器件主要以电力二极管和晶闸管为代表。第一代电力电子器件的特点是体积小、耗能低。在电力电子技术产生以后其迅速的取代了原有电力系统中的老式汞弧整流器,为电力电子技术的推广和发展奠定了良好的基础。同时,电力二极管对于电路系统中电路性能的改善作用十分明显,它在降低电路损耗和提高电源使用率方面也各有建树。

电力电子技术发展到现在,整流二极管的种类各式各样,功能也各不相同。随着电力系统的不断发展,第二代电力电子器件在上世纪79年代产生,第二代电子电力器件的特点是具有自动关断能力(例如可关断晶闸管和静电感应晶体管等)。第二代全自动可控型的电力电子器件较第一代晶闸管相比,开关速度有了明显的提升,可以用于开关频率较高的电路中。

第三代电力电子器件的产生是在上世纪末90年代,随着电力系统的不断建设和发展,电力电子装置的结构和体积得到了进一步的改良,第三代电力器件的体积更小,结构也更为紧凑。并且出现了将几种电力器件相结合的电子模块形式,为电力器件的发展和使用创造了很大的方便。后来,又在集成模块的基础上,把应用于控制电力技术中的多中国电力器件相组合,构成了集成电路。功率集成电路的出现,标示着电力电子技术迈向了高频化和标准模块化以及集成化和智能化的新时代。

电力电子技术的产生至现在,以电力电子器件的变革为历程,经历了以上三个阶段。目前,电力电子技术正向着以高频技术处理问题为主的现代电力电子技术方向发展。在实现高频技术的基础上,更增加了节能、环保、自动化、自能化等特点。

二、电力电子技术在电力系统中的应用

1.电力电子技术在发电环节中的应用

电力电子技术在发电环节中的应用,主要体现在发电机组的励磁控制和变频调速上。在我国范围内乃至全球范围内的各个大型电厂发电机组中,运用的最为普遍的就是静止励磁系统,电力电子技术的发展,使电子技术取代了励磁控制中的励磁机环节,使静止励磁实现了简单的控制构造和高性能低成本的运作。同时由于电子技术代替了励磁机的环节,使静止励磁能够对自身进行迅速有效的调节,提高电力系统的运作效率。

其次,电子技术也普遍应用在电厂发电机组的变速恒频励磁上。由于在水力发电中,水源头的压力和单位时间内水力的流动量对水力发电的效率产生着影响,水力发电机组的运转速度也在随着水力的压力和流动量不断变化。同样的道理也发生在风力发电和活力发电当中。因此,对发电机组转动的励磁电流频率进行调整,使发电机组的电流频率同转速通过电子技术达到一致,保证发电机组实现最大功效的运作,变速恒频励磁技术就是其中的代表。

同时,电子技术也应用于电厂的风机水泵的变频调速上和太阳能发电控制机组的控制系统中。在电厂的电力生产过程中,由于发动机组等设备对于发电量的损耗相对较大,考虑电力生产中节约能源的要求。在高压电和低压电的转换过程中,使用风机水泵变频机替代原有的变频器,改变电能转换过程中耗能大效率低的问题。这一技术还在不断完善和摸索中,还需要电力研究工作者不断的努力和创新。

而在太阳能发电的控制系统中,电子技术的作用尤为突出,太阳能作为21世纪被广泛重视的新型能源,发展太阳能发电产业是整个国家乃至全世界的战略目标。然而由于太阳能发电本身的功率过大,在使用太阳能发电机组发电的时候,需要将生产出来的电能进行转换,这个时候就需要大功率的电流转换器。而电子技术能够很好的解决这一问题。

2.电力电子技术在输电线路中的应用

电力电子技术在输电线路中的应用主要体现在柔流电技术、高压直流电技术以及静止无功补偿器等上。

(1)柔流输电技术

柔流输电技术(FACTS)产生于上世纪的80年代,主要以柔性的交流输电设备为表现方式广泛应用于输电线路中。在电力的输送过程中,由于传统电力功率的控制方法过于粗糙,无法实现在输电过程中对于电能的调整,使输电过程中产生大量的电力损耗和高昂的输送成本。而柔流输电技术的主要内容是在输电线路的重要部位使用电力电子控制装置,对输电系统中的各项参数进行适时的控制,以实现输送过程中电能功率的合理分配,降低书店过程中的输送成本和电能消耗,大幅度的提高电力系统的稳定性和可靠性。

(2)高压直流输电技术

高压直流输电技术在输电系统中的主要实现是以晶闸管为代表的。晶闸管是电力电子技术发展的一个重要发明,自从晶闸管产生并被尝试应用于直流电的输电系统上,晶闸管换流阀就一直应用于输电系统中的直流电输送中。在这之后又出现了具有可操作的电力输送控制器,例如GTO、IGBT等等,可操作的电力系统输送设备为电流的转换过程减少了交直转换变压器的使用,为电厂的电能生产减少了生产成本,加强了电流交换设备在电力系统中的竞争力。

(3)静止无功补偿器

静止无功补偿器(SVC)在上世纪70年代被广泛使用电力系统之中,静止无功补偿器在电力系统中被广泛应用于负荷补偿和输电线路补偿当中,在大功率的输电网络中,静止无功补偿器主要起到的是控制电压的作用,也用于提高系统的稳定性和阻尼等。静止无功补偿器的设计不包含旋转部件,它不使用大容量的电容器,所需要的无功功率通过电感器来获得,静止无功补偿器通过对电抗器进行迅速的调控,能够实现发出无功功率到吸收无功功率的平滑转变,特别适用于中高压输电线路中的无功补偿工作。

3.电力电子技术在配电过程中的应用

要使配电系统能够配送出高质量的电力资源,需要在配电过程中满足配电频率、电压以及在谐波上满足相应的条件,同时,在配电过程中需要阻止电能的各种不稳定的波动和影响。这个过程中,电力电子技术作为配电环节的质量控制部分,以用户电力技术和FACTS技术为实现形式。FACTS技术在前文已经提及,它是通过在配电线路中增设电力电子装置,加强对与电压,电流和功率的可控性,调控电力传输能力的技术。

用户电力技术解决的是配电系统中既时发生的需要马上解决的重要问题,主要复负责配电系统在配电过程中的安全性和稳定性,用于保证配电输电过程中,电力能源的质量。而FACTS技术则更为倾向于配电系统中对于电能的输送能力和有效控制力。FACTS技术和用户电力技术都是针对配电系统开发出的新型电力电子技术,两者的构造和工作原理大致上相同,随着电子技术的不断发展,在近些年,FACTS技术和用户电力技术在一定程度上已经逐步同步并合用,其中比较具有代表性的就是定制电力(DFACTS)技术。

4.电力电子技术在电力系统节能方面的应用

电子技术在电力系统节能方面的应用主要体现在两个方面,分别是:变负荷电动机调速运行方面和提高电能使用率方面。电厂生产电能和配送电过程中,常常产生大量的电能浪费。上文已述,电厂在生产电能的过程中,由于发电能源的变化,发电机组不能够很好的实现配合,会产生无功功率的浪费现象。通过对变负荷电动机的运转速度进行调整和控制,能够实现电能的良好生产和配用。这项技术在国外已经比较成熟,但是我国仍然处在研究和探索的阶段。但是,变负荷电动机在实际的应用中也存在不可忽视的缺陷,变负荷电动机在控制和调控运转速度方面适用的发电机组较为广泛,在实际运行中的工作效率也十分准确。但是变负荷电动机的生产和配置成本较高,而且在工作过程中对电网的影响较大,只适用于中大型电厂。同时,我国电力系统现用的电力设备,在配送电的过程中,对于电能的损耗和生产的成本较高,对于电能的质量影响较大。而电子技术能够通过在配送电系统中增设可控设备,对配送电过程中的电能进行调控,保证电能的质量和稳定。

三、总结

电力电子技术在电力系统中的应用和发展对于电力系统的建设和发展起到了里程碑的作用。随着计算机技术和电力技术的不断发展,电力电子技术也在不断的吸收新的技术不断的发展。然而,作为一种处在发展过程中的电力控制技术。电力电子技术在电力系统中的应用和稳定性还远远不能够达到电力电子技术的设计要求。如何实现电力电子技术在电力系统中应当起到的控制作用,我们要从电子设备的革新和电力电子技术的不断发展上谋求出路,不断的探索和发展电力电子技术对于提高电力的生产质量,减少生产成本和配送损耗,实现电力系统的经济效益,有着重要的意义。

参考文献

[1]张建诚,陈志业,梁志瑞.现代电力电子技术在电力系统中的应用[J].电力情报,

1999(03).

[2]郑锦彪.浅谈电力电子技术在电力系统中的应用与研究[J].黑龙江科技信息,2007(05).

[3]李亚峰,蒋奋翘.电力电子技术发展的新趋势[J].浙江工商职业技术学院学报,2006(03).

[4]杨超.基于DSP的有源电力滤波器的开发研究[D].河北工业大学,2003.

[5]夏凌辉.新型多路输出高压隔离电源及其在固态短路限流器中的应用[D].浙江大学,2004.