首页 优秀范文 混凝土结构设计基本原理

混凝土结构设计基本原理赏析八篇

时间:2023-09-17 15:03:02

混凝土结构设计基本原理

混凝土结构设计基本原理第1篇

关键词:混凝土结构设计原理;教学方法;土木工程

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2015)41-0267-02

混凝土结构设计原理是土木工程专业重要的专业基础课,在专业教学中具有承上启下的作用,先修课程有建筑制图、土木工程材料、理论力学、材料力学、结构力学等,对后续的混凝土结构设计、高层建筑结构设计等课程的学习有重要影响,也是课程设计、毕业设计等实践环节的重要基础。课程内容涉及混凝土结构材料的基本性能,构件承载力计算,构件的裂缝、变形和耐久性以及预应力混凝土构件设计[1]。

混凝土结构设计原理这门课程,具有材料的不确定性、解答的多样性、设计的综合性等特点[2],课程内容中的实验现象多、假定多、概念多、公式多、系数多、条件多、构造要求多,且逻辑性、系统性差,较为零散[3,4],但理论性与实践性较强,与先修课程相比差异性大,导致教师教起来不易、学生学起来困难。笔者结合近几年的教学,在以下几个方面进行了一些思考和实践,取得了较好的效果。

一、熟悉材料性能

钢筋混凝土由钢筋和混凝土两种物理、力学性能很不相同的材料组成,只有熟悉钢筋和混凝土这两种材料的性能,才能较好地理解与解释实验现象。混凝土抗压强度高,抗拉强度低,因此结构构件处于承载力极限状态时,只考虑混凝土抗压,不考虑抗拉。混凝土由水泥、骨料、水等材料拌合而成,强度的离散性大,且混凝土的破坏属于脆性破坏,因此在确定其强度设计值时,材料分项系数取值较大。钢筋力学性能较好,抗拉强度高,在结构构件中主要承担拉力;在柱与双筋受弯构件中,也用于受压,其抗压强度与抗拉强度相当,但钢筋用于受压时,容易失稳,因此需要合理配置横向约束,即箍筋。钢筋及混凝土的应力-应变曲线是较为重要的,它是钢筋混凝土构件应力分析、建立强度和变形计算理论必不可少的依据。此外,还应熟悉钢筋和混凝土之间粘结力的相关知识,这是钢筋截断、锚固、弯起等构造措施的依据。

二、抓住教学主线

构件承载力计算是这门课程的重点,涉及到拉、压、弯、剪、扭等基本受力形式及其复合受力形式,但钢筋和混凝土均为弹塑性材料,且离散性大,因此无法根据先修力学课程采用纯理论的方法直接建立承载力计算公式。通常是在试验的基础上,引入合理的基本假定,画出应力图形,借助力学知识或回归分析等方法建立承载力计算公式(包括其适用条件),然后用于工程设计,对于计算公式中未考虑的一些不利因素,通过构造措施进行补充。因此,在承载力计算章节中,要牢牢抓住“试验现象分析―引入基本假定―画出应力图形―建立基本公式―进行工程设计”这一主线,其中试验与假定是基础,应力图形是关键,基本公式是结论,工程设计是目的[4]。值得注意的是,工程设计既包含计算,也包含构造措施。

在计算过程中,初学者往往习惯于联立解方程,实际上应用基本公式也是有主线可依的,如单筋矩形截面设计,按的步骤计算,思路清晰,每一步都可以检验适用条件。

三、进行对比分析

大多数教材将构件承载力计算分为多个章节,各章节之间看似没有联系,知识信息处于零散状态,学生学起来比较困难。教师需找出各章节之间的内在联系,对比讲解,便于学生掌握。

受弯构件中,单筋矩形截面较为简单,大多数学生能较好地掌握。与单筋矩形截面相比,双筋矩形截面在受压区配置了受力钢筋,图1(a)为双筋矩形截面,抵抗的极限弯矩为Mu。从受力的角度,可以将受压区的混凝土和钢筋分开,并配置相应的受拉钢筋,如图1(b)、(c)所示,其中图1(b)为单筋矩形截面,抵抗的极限弯矩为M1,图1(c)为纯钢筋部分,抵抗的极限弯矩为M2,根据叠加原理,有Mu=M1+M2。

四、引入案例教学

混凝土结构设计原理是一门实践性较强的课程,引入案例教学,可以增强学生对这门课程的认识和理解。设计案例应符合教学目标的要求、符合工程实际、符合混凝土结构设计的发展趋势[5],有一定的启发性和适用性。根据学生的实际情况合理设置案例的难度,选择现实生活中关心或常见的问题,可以提高学生的兴趣,使教学效果更好。在实施案例教学前,需要学生准备好相应的理论知识。呈现案例后,应明确要解决的问题。然后,寻找解决问题的方法,这是案例教学的核心部分,教师应当做适当的引导,对于学生提出的解决方案,应进行点评与总结,并对案例进行拓展与深化。案例教学过程中的重点在于学生的思路与讨论的质量,结果可以是多样化的。

五、培养实践能力

混凝土结构设计原理的理论体系不完善,很多公式是由试验结果回归而成,实践性强,问题抽象,理解起来较为困难。培养实践动手能力对于学好这门课程大有裨益,对今后从事相关工作也奠定了良好基础。实践能力可以从以下几个方面着手:①现场观摩,安排学生参观建成或在建的混凝土结构,加强对梁、板、柱等混凝土构件的感性认识;②参与试验,本课程中涉及大量的试验,应尽可能让每位学生参与到试验过程中,若学校不具备这样的试验条件,可以通过观看试验录像,加强对各种构件破坏机理的理解;③编制计算程序,教材中有各种承载力计算的框图,按框图写出程序(采用Excel表格也可以),可以加深对本课程的理解,也为毕业设计奠定了一定的基础;④理论联系实际,在学习相关内容后,可以让学生寻找相关破坏的工程实例,并分析其原因,具备这种能力后,毕业后可以较迅速地适应相关的工作。

六、板书与多媒体并重

当前,大多数教师习惯于采用多媒体进行教学,这种教学手段形象、信息量大,可以较好地调动学生学习的兴趣,加深对所学知识的理解。混凝土结构设计原理这门课程,涉及到大量的实验现象,大多数学校不具备开展各类型构件破坏试验的条件,但可以通过图文、录像资料重现试验过程,增加学生的感性认识,将枯燥的内容变得生动起来,再结合老师讲解,就能较好地理解实验过程中所蕴含的力学知识。但对于大量的公式推导,在黑板上一步步演示推导过程,可以加强学生对公式的理解和记忆。总之,在教学过程中,合理的结合板书和多媒体,可以提高学生的学习积极性,提高教学效果。

通过在上述几个方面的努力,这几年的教学效果逐渐提高,在今后的教学中,还需要在创新教育教学方法,培养实践动手能力,增强概念设计意识等方面进行进一步探索,进一步提高教学水平和教学效果。

参考文献:

[1]沈蒲生,梁兴文.混凝土结构设计原理(第4版)[M].北京:高等教育出版社,2012.

[2]关萍.《混凝土结构设计原理》课程建设[J].大连大学学报,2010,(5):116-118.

[3]李书进,沈少波.混凝土结构课程教学探讨[J].建筑结构,2008,38(9):204-206.

混凝土结构设计基本原理第2篇

关键词:混凝土;结构设计;抗裂措施

混凝土结构物产生裂缝是结构物的承载能力、耐久性、防水性等的各种性能下降的主要原因;其对策的重要性直接影响到结构物的耐用年数,以及能否达到设计要求的服役年限。按我国有关规范设计的工程,有相当数量的混凝土构件配筋量是由裂缝控制决定的,裂缝控制是制约工程质量和建设成本的一个重要因素。

混凝土裂缝产生的原因很多,基本上裂缝的发生与混凝土原材料、设计、施工的环境条件和施工工艺、结构的使用和维护等密切相关。结构设计是首位,不仅要保证设计的结构具有足够的强度和强度储备,而且针对不同的结构应采取相应的抗裂措施。

1、混凝土结构裂缝成因分析

为了有效解决混凝土施工过程中存在的裂缝问题,需要对其产生原因做细致分析,结合建筑工程施工实践看,导致混凝土裂缝的原因有很多,但归纳起来主要包括如下几个方面:

原材料的配置不合理,如混凝土配置时水泥所占的比例过大,导致混凝土中的水分较大,当水分蒸发后也会导致混凝土的收缩增大,如果骨料所使用的砂岩颗粒较小也会增大混凝土的收缩率,因而也更容易发生裂缝现象。

施工现场环境恶劣,施工现场的温度湿度也会对混凝土是否裂缝产生重要影响,建筑施工时会在混凝土内部发生水化放热现象,加之混凝土内外部的温差变化和建筑配件的互相限制,当混凝土的抗裂能力小于温差变化产生的温度应力时,在建筑表面甚至内部也会出现裂缝现象。

施工设计的不合理,如在安装混凝土楼板时,由于受到双向剪力的作用,在切角处常常会出现裂缝,对此也可以从力学角度加以计算分析。除了上述三个主要影响因素以外,混凝土裂缝问题还受到诸如建筑结构、施工工艺以及后续维护的影响,只有综合考虑并完善这些细节工作,才能有效改善混凝土施工实践工作,提升建筑工程质量。

2、结构设计时用的抗裂措施

2.1混凝土原材料的选择

要控制混凝土的开裂,需要从原材料的选择出发,原材料选择的正确与否,直接影响到混凝土的开裂。由于混凝土自身的特性,水灰比过大,水泥用量大,外掺剂保水性差,粗骨料少,用水量大,振捣不良,环境气温高,表面失水大(养护不良及吸水砖模)等都能导致塑性收缩表面开裂。

自20世纪初起,为了减小水化放热产生的影响,开始采用掺火山灰的办法,30年代又开发出低热水泥。利用加大粗骨料粒径、非常低的水泥用量、预冷拌合物原材料、限制浇筑层高和管道冷却等措施,进一步获得了降低水化温峰、抑制热裂缝的效果。因此从选择水化热低的水泥,控制水灰比,减少水泥用量和用水量,添加适当的外加剂等措施以控制混凝土的开裂。例如,超长的地下室结构外墙应选用补偿收缩混凝土,即在混凝土中掺入UEA、HEA等微膨胀剂,以混凝土的膨胀值减去混凝土的最终收缩值的差值不小于混凝土的极限拉伸即可控制裂缝。普通硅酸盐水泥外掺粉煤灰可有效控制早期和长期收缩开裂。

2.2提高结构自身承载力

在建筑工程设计过程中,有时候虽然梁板的挠度和承载力都在规范标准的限定范围之内,但是如果相比而言,挠度较大而承载力较小,这种偏差也会导致工程项目产生裂缝,对此可通过提高结构配筋率、加大梁截面或板厚加以解决。考虑混凝土的承载力会随着温度、湿度等带来的环境侵蚀而逐渐降低,因此对混凝土相关项目的设计必须考虑留有一定的安全余地,从而保障工程项目的安全、持久和耐用。此外,建筑地基的不均匀沉降,引发的受力不均也极易导致裂缝现象,对此应考虑加强基础的整体性能,如在拉梁两端设置相应的后浇带,通常的做法是在每30~45m设置一道后浇带并在45~60天以后进行浇筑。

2.3减小地基的不均匀沉降

因为建筑物地基的不均匀沉降而引起的结构裂缝的事例不多,位于采空区的建筑物易发生。此时需加强基础的整体性,以减小地基不均匀沉降对结构的影响,比如独立基础时设置拉梁,或采用筏板基础,或采用箱形基础。如果地基土本身软硬不均,除采取上述措施外,还可以采取局部换土或加大基础底面积的措施。柱下独立基础或桩承台,当设置拉梁时,由于各独立基础或桩承台之间的沉降差,会造成拉梁两端的开裂,而且在有些工程中开裂还非常严重。此时建议在拉梁两端各设一道后浇带,如果地质条件较好可设一道或不设。

2.4控制地下室墙体的裂缝并设置后浇带

为控制地下室墙体裂缝的发生,可在墙体顶部和腰部设两道暗梁,并适当增设暗柱,以起到模箍作用或适当增加墙体配筋。为防止墙体出现早期收缩裂缝,在墙体中可设置适当数量后浇带。随着社会的发展,超长建筑越来越多,而且很多因为建筑功能和美观不让设伸缩缝,这便需要结构专业采取措施来解决混凝土的收缩应力和温度应力引起的结构变形和裂缝。一般做法即是设置后浇带: 每隔30~45m设置一道,在45~60d后浇筑。超长建筑物、高层建筑的屋面板、不做保温的屋面板均会产生很大的温度应力,势必会形成温度裂缝。加厚板厚且受力钢筋双层双向配筋能有效的解决温度应力对裂缝的影响,但钢筋间距不宜过大,一般不大于150mm。或加厚板厚但受力钢筋不通长设置,在受力钢筋外侧设置双层双向Φ6@150的钢筋网片。

2.5必要厚度的保护层

混凝土结构中,钢筋与混凝同工作,足够的配筋是保证混凝土结构承载力的必要条件; 钢筋在混凝土中良好锚固是钢筋与混凝土能共同工作的保证。因此,钢筋需除去泥土、油污、锈蚀,使之与混凝土良好的结合,以保证混凝土对钢筋的握裹力。否则,钢筋锈蚀会逐渐导致混凝土出现顺钢筋的裂缝,裂缝发展会导致混凝土剥落开裂,这种裂缝不但破坏混凝土对钢筋的握裹力、破坏钢筋的锚固,还会加速钢筋的锈蚀。如此发展下去使结构的承载力下降,耐久性降低,甚至危及结构的安全。而混凝土结构设计规范也指出,当混凝土保护层厚度较大时,虽然裂缝宽度计算值也较大,但较大的混凝土保护层厚度对防止钢筋锈蚀是有利的。因此,要有必要厚度的保护层使钢筋与外界隔绝,避免此种情况的发生。

3、结语

混凝土裂缝问题直接关系到建设施工项目的美观和安全性能,需要重点加以关注。本文在较为详细分析混凝土结构裂缝原因的基础上,针对性的提出了相应的改进建议,旨在抛砖引玉,相互交流,有效促进相关工程实践工作的更好开展。

参考文献:

混凝土结构设计基本原理第3篇

钢筋混凝土结构设计原理是土木工程专业重要的一门专业主干课,该课程主要研究典型构件梁、板和柱等的一些力学性能、设计方法、构造要求和破坏特征等,其任务是向学生传授混凝土结构构件受力性能、计算原理和设计方法,为混凝土结构设计奠定基础。

然而钢筋混凝土结构设计原理的特点是概念多、内容多、符号多,加上规范的约束性,公式的经验性和问题的多解性,给学生的学习带来了一定的困难。为了改变这种状况,提高教学效果,本文结合作者多年的教学经验,从课堂教学的角度作了一些探讨。

1 课程特点

(1)课程综合性很强,要求学生具备扎实的数学和力学基础知识。

钢筋混凝土结构设计原理的教学内容从材料的力学性能入手,然后研究基本构件的承载特性和破坏特征。由于混凝土是由水泥、骨料和水搅拌经凝结硬化而形成,因此,混凝土材料的离散性大,力学性能较为复杂,相应的材料参数具有不确定性。为了获得混凝土材料及其构件的强度设计值,需要学生掌握概率论与数理统计相关的数学知识,理解极限状态设计方法。在分析构件基本受力过程中,虽然混凝土材料不是均质且非各向同性材料,但仍采用了材料力学分析问题的方法。因此,需要学生具有扎实的数学与力学基础。

(2)理论与工程实践相结合,需要培养学生的工程素质。

钢筋混凝土结构基本原理是一门由理论向工程实践转化的学科,也是学生第一次接触理论与工程实践都很强的课程。在教学过程中,学生经常有解决问题的结果为什么不是唯一的困惑。因此,需要让学生明白,影响一个实际工程的参数很多。在满足《钢筋混凝土结构设计规范》的前提条件下,很多参数的选取具有一定的主观性和经验性。因此,需要在课程教学中,建立学生的工程概念,培养他们的工程素质。

(3)涉及内容多,知识覆盖面广。

钢筋混凝土基本原理内容主要包括:材料特性、构件的承载性能、理论分析、构件设计计算等四个部分。在材料特性中,不仅要掌握混凝土的力学特性,也要掌握其非力学特性,如收缩与徐变。构件的承载性能中,由于混凝土的离散性及脆性特征、钢筋与混凝土2种材料的配比,以及荷载的加载方式,都会影响着构件的承载性能。通过分析构件的承载性能,建立合理的力学计算模型,进行理论分析,推导出构件的设计计算理论。并与实验结果相对比,并考虑工程的安全性及舒适性,最终落实到工程实践中。因此,钢筋混凝土基本原理涉及内容多,体系庞杂。

2 课堂教学探讨

(1)采用案例法,梳理混凝土结构设计原理的内容。

案例教学法是以学生对案例的运用和讨论为特点,帮助学生掌握对实际问题进行分析和反思的方法,重在提高学生的认识水平和解决问题的能力。其教学方法是根据教学目标的需要,以案例为基本素材,把学生带入特定的事件情景中,进而识别问题、分析问题和解决问题,其最根本的内容就是案例的选取和使用,这也是案例教学区别于其它方法的关键。其特点有:真实性、典型性、规范性、启发性和实用性。

(2)树立正确的设计观念,培养工程素养。

在刚开始讲授钢筋混凝土结构设计基本原理课程时,学生的概念里仍然是任何问题都只有唯一的精确理论解,学生只会解答严格给出条件的问题,但条件设定不完全时,学生往往会无法下手。面对钢筋混凝土结构基本原理,学生总会设法找到设计结果的唯一性与精确性。这就需要授课老师回答正确的设计观念。设计是从未知到已知,包括收集资料,方案比较,计算分析,结果评价,反复修改。在收集资料过程,使用材料的属性只能估算;结构方案分析时,只能进行结构的近似分析;建筑结构物上承受的外荷载并不能准确得知。因此,设计也是一项综合性的创造性工作,设计不是一次就能成功的。它是一个寻求最佳解的过程。由于材料属性的离散性和外荷载的不确定性等因素的影响,使得设计结果答案不唯一,但有好坏之分。通过对设计概念的讲解,让学生明白设计一个工程与做一道数学题的区别,从而培养他们的工程素养。

(3)系统介绍研究思路,帮助学生理解实验性结果的科学性。

与材料力学课程比较,钢筋混凝土结构的基本理论是建立在大量的试验数据曲线拟合的基础上,构件的设计计算内容是建立在实验和工程实践基础上的,故存在很多经验系数和经验公式。这可能使得学生怀疑这门学科的科学性,难以让学生找到学习这门课的方法。因此,需要老师系统地介绍以概率理论为基础的设计理论方法。针对一个未知的领域,解决问题的主要思路分为以下几个步骤:①首先通过大量的实验,观察实验现象,找到问题的主要影响因素;②建立合理的数学力学计算模型;③以相关力学理论为基础,建立相应的设计计算方法;④将理论结果与对实验经果进行认真对比分析,寻找结果差异的原因;⑤以工程实际需求为目标,对设计计算方法进行修正。然后以某一构件(如抗扭构件)的设计计算理论为例,来讲解其设计方法。这就使得学生易于理解规范中的相关构造要求,以及设计参数的上下限值(如最小和最大配筋率)。

(4)注重归纳总结,加强教学的逻辑性

符号多是钢筋混凝土结构基本原理一大特点,在学习过程中,学生常常混淆符号。因此,老师在教学过程中,需给学生讲解符号的规律。符号的下标一般是英文单词的开始字母。如:εe、εp、εsh、εcr依次为弹性应变,塑性应变,收缩应变和徐变。为了便于学生能很好记住这些符号,在课件中给出专业术语的英文单词。另外,课本中构造部分规定性东西多,内容比较零散,缺少逻辑性,有时,一个规定,在不同的地方多次出现。

混凝土结构设计基本原理第4篇

关键词: 钢筋混凝土 结构 裂缝

前言

钢筋混凝土结构裂缝问题在建筑施工程中是比较多见的,同时,裂缝问题也给设计和施工人员带来很大的挑战。如何控制钢筋混凝土结构裂缝的问题则将是本文研究的核心。文中除了对钢筋混凝土结构裂缝形成的原因做了阐述以外,还针对出现的问题提出了应对措施,

希望有助于读者。

1. 混凝土结构裂缝的危害

由于在混凝土结构中存在变形能力差、拉压比低、非均质性等特点,并且混凝土的体积会随着周围环境的温度、湿度、空气以及化学反应的变化而产生变化,因此混凝土结构中很容易产生裂缝。混凝土的裂缝不仅会对建筑物结构的安全可靠性造成损害,还会影响建筑物结构的耐久性。在混凝土结构中甚至小小的裂缝若是未能妥善处理还有可能会造成建筑物坍塌,可见后果真的是不堪设想的。

2.产生钢筋混凝土结构裂缝的主要因素

2.1钢筋混凝土材料质量

钢筋混凝土结构在浇筑、硬化的过程中会产生各种应力,如果对钢筋混凝土材料不进行全面的控制,当应力超出钢筋混凝土的结构强度时就会出现裂缝。主要的材料因素有:第一,水泥和集料中存在大量的泥沙、氯离子、硫酸根离子,这会导致钢筋混凝土强度不足,在脆弱的地方会出现裂缝。第二,水泥水化热过高,并且没有应用适合的外加剂,这会造成钢筋混凝土出现早强性裂缝。

2.2钢筋混凝土施工工艺

工艺是导致钢筋混凝土结构出现裂缝的主要原因,如果钢筋混凝土施工工艺不能按规范进行,出现模板搭建不当、钢筋混凝土结构支撑不足、模板拆除过早、保湿保温不力等问题,都会导致钢筋混凝土结构裂缝的产生。

2.3钢筋混凝土施工温度

钢筋混凝土中水泥在水化和硬化的过程中会产生大量的热,由于钢筋混凝土结构导热性能差,会在钢筋混凝土结构内部产生温度与热量的积累,进而出现钢筋混凝土结构内部的应力与形变趋势,如果这种趋势超出钢筋混凝土结构强度时就会出现裂缝。

2.4钢筋混凝土湿度

钢筋混凝土在硬化的过程中会出现水分蒸发,如果不及时对钢筋混凝土结构进行保湿处理,则会产生干缩的趋势,在水分流失严重的情况下,钢筋混凝土结构表面会产生干缩裂缝,不但影响钢筋混凝土表面质量,也会影响钢筋混凝土结构的强度。

2.5钢筋混凝土提前受荷

在钢筋混凝土结构没有形成设计的强度而过早负荷会产生钢筋混凝土结构内部的变形,甚至会出现钢筋混凝土结构的裂缝,这不但会影响钢筋混凝土结构的后续施工,而且也会直接影响钢筋混凝土结构的强度。

3控制钢筋混凝土结构裂缝的主要措施

3 . 1 设计方面

减少地基的不均匀沉降基础设计方面可以采取调整基础的埋置深度、地基计算强度、垫层厚度等方法来控制地基的不均匀变形。同一软弱土地基上,应尽量采用同一种类型的基础,否则容易造成沉降量大小不均匀,从而产生危害性裂缝。合理设置结构缝设置结构缝的位置和缝宽的选定要适当,构造要合理。可以把伸缩缝、沉降缝和抗震缝合并设置。按照设计规范要求设置伸缩缝,但应考虑高温、冬期、长期暴露在大气中的建筑物,承受反复的温差,骤冷骤热,反复的干湿作用,结构内部不断产生裂缝和裂缝扩展等因素。当结构体型突变或者设置的伸缩缝间距偏大,超出规范要求时应采取有效的防开裂措施,如增大配筋率、通长配筋、设置后浇带、改善混凝土级配等。避免应力集中,合理增配构造钢筋提高抗裂能力尽量避免结构断面突变产生应力集中,在易产生应力集中的薄弱环节采取加强措施,适当增加附加筋,以增强其抗裂能力。

3 . 2 施工方面

在建筑施工中,一定要对材料进行严格的挑选,对建筑材料的质量进行一定的评定。在钢筋混凝土材料的配比中,一定要严格控制好用水量,不能将混凝土材料随意的进行用水,一定要根据科学的配比严格进行,在水泥的选用上,一定要选择地热的,这样有利于在混凝土的配比中降低混凝土凝固过程的水化热。在配比中,应在规定的条件下,减少水泥和水的用水量,这样就会提高混凝土的粘合性,在对混凝土的配合中,可适当的加入粉煤灰和减水剂,这样在使用时,会有良好的效果,减少建筑物的裂缝。合理设置后浇带对于大型混凝土建筑物,合理的设置后浇带有利于控制施工期的温差与收缩应力,减少裂缝。后浇带设置时,要遵循“数量适当,位置合理”的原则。后浇带一般间距为30~50m,并应贯整个底板断面。后浇带内填筑的混凝土应用微膨胀水泥或无收缩水泥,混凝土强度应比原结构强度提高一级。

3.2控制钢筋混凝土材料质量

在钢筋混凝土拌制中重点对水泥、骨料、外加剂进行严格的技术与质量控制,要根据设计与施工条件选择适于强度形成和预防裂缝的水泥品种,杜绝早强性、高水化热水泥的使用,同时应该添加一定量的减水剂、粉煤灰、延时剂,以此来控制水灰比,减少裂缝的产生。

3.3控制钢筋混凝土的配合比

要结合钢筋混凝土的设计和施工环境,做到对配合比的反复验证和精确控制,特别要对水泥、沙石等材料的配合比进行不断优化,这样有助于控制钢筋混凝土结构裂缝。

3.4控制钢筋混凝土的施工技术

一方面,要合理安排钢筋混凝土结构的施工顺序,一般采用先重、高,后轻、低的施工顺序。另一方面,做好钢筋混凝土结构的钢筋配置,钢筋的间距及保护层的大小都可能对构件的杭裂性能造成影响。加强钢筋混凝土结构的养护,保证足够的养护时间。在养护期间,还应做好温度控制工作。

4结语

钢筋混凝土结构是重要建筑、大型建筑和重点工程的主要建筑结构类型,从大趋势和环境角度看,社会和经济越发达,建筑物中应用钢筋混凝土结构的数量就越多,钢筋混凝土结构发挥优势的可能也就越大。在钢筋混凝土结构施工中受到各类因素的制约与影响会产生裂缝,这会导致钢筋混凝土结构出现安全问题,钢筋混凝土结构的建筑施工就可能失败。因此,要在钢筋混凝土结构建设过程中,从设计、施工两个方面进行技术上和管理上的预防,使钢筋混凝土结构施工更为科学和可控,以便实现钢筋混凝土结构施工质量的提升,进而为整个建筑工程打造坚实的结构、安全与功能基拙。

参考文献:

[l]王玉.伟赵朝建工春胜产生商品混凝土R期开裂的原因与防治措施[J].粮食流通技术,2005, 03.

[2]陈金水房屋建筑墙体裂缝成因及控制措施探讨[J].中小企业管理与科技(上旬刊),2010,(08):43-44,108-109

混凝土结构设计基本原理第5篇

【关键词】高层建筑; 施工; 后浇带; 混凝土

一、施工后浇带的功能和做法分析研究

1、 施工后浇带的功能。施工后浇带分为后浇沉降带、后浇收缩带和后浇温度带, 分别用于解决高层主楼与低层裙房间差异沉降、钢筋混凝土收缩变形, 减小温度应力等问题。这种后浇带一般具有多种变形缝的功能, 设计时应考虑以一种功能为主, 其他功能为辅。施工后浇带是整个建筑物包括基础及 L 部结构施工中的预留缝(“缝”很宽,故称为“带”) , 待主体结构完成, 将后浇带混凝土补齐后, 这种“缝”即不存在, 既在整个结构施工中解决了高层主楼与低层裙房的差异沉降, 又达到了不设永久变形缝的目的。

2、施工后浇带的做法。一般高层主楼与低层裙房的基础同时施工, 这样回填土后场地平整, 便于上部结构施工。对于上部结构, 无论是高层主楼与低层裙房同时施工, 还是先施工高层, 后施工低层, 同样要按施工图预留施工后浇带。对高层主楼与低层裙房连接的基础梁、上部结构的梁和板,要预留出施工后浇带, 待主楼与裙房主体完工后( 有条件时再推迟一些时间) , 再用微膨胀混凝土将它浇筑起来, 使两侧地梁、上部梁和板连接成一个整体。这样做的目的是为了把高层与低层的差异沉降放过一部分, 因为高层主楼完成之后, 一般情况下, 其沉降量已完成最终沉降量的 60% ~ 80% , 剩下的沉降量就小多了, 这时再补齐施工后浇带混凝土, 二者差异沉降量就较小一些,这部分差异沉降引起的结构内力, 可由不设永久变形缝的结构承担。对于施工后浇收缩带, 宜在主体结构完工两个月后浇筑混凝土, 这时估计混凝土收缩量已完成 60% 以上。施工后浇带的位置宜选在结构受力较小的部位, 一般在梁、板的变形缝反弯点附近, 此位置弯矩不大, 剪力也不大; 也可选在梁、板的中部, 弯矩虽大, 但剪力很小。在施工后浇带处, 混凝土虽为后浇, 但钢筋不能断。如果梁、板跨度不大, 可一次配足钢筋; 如果跨度较大, 可按规定断开, 在补齐混凝土前焊接好。后浇带的配筋, 应能承担由浇筑混凝土成为整体后的差异沉降而产生的内力, 一般可按差异沉降变形反算为内力, 而在配筋上予以加强。后浇带的宽度应考虑便于施工操作, 并按结构构造要求而定, 一般宽度以 700 mm~ 1 000 mm 为宜。施工后浇带的断面形式应考虑浇筑混凝土后连接牢固, 一般宜避久留直缝。对于板, 可留斜缝; 对于梁及基础, 可留企口缝,而企口缝又有多种形式, 可根据结构断面情况确定。

二、高层建筑混凝土施工要点分析

1、混凝土强度及主要影响因素。混凝土质量的主要指标之一是抗压强度, 从混凝土强度表达式不难看出, 混凝土抗压强度与混凝土用水泥的强度成正比, 按公式计算, 当水灰比相等时, 高标号水泥比低标号水泥配制出的混凝土抗压强度高许多。所以混凝土施工时切勿用错水泥标号。另外, 水灰比也与混凝土强度成正比, 水灰比大, 混凝土强度高,水灰比小, 混凝土强度低, 因此, 当水灰比不变时, 企图用增加水泥用量来提高混凝土强度是错误的, 此时只能增大混凝土的和易性, 增大混凝土的收缩和变形。综上所述, 影响混凝土抗压强度的主要因素是水泥强度和水灰比, 要控制好混凝土质量, 最重要的是控制好水泥和混凝土的水灰比这两个主要环节。此外, 影响混凝土强度还有其他不可忽视的因素。

2、混凝土标号与混凝土平均强度及其标准差的关系。混凝土标号是根据混凝土标准强度总体分布的平均值减去1. 645 倍标准值确定的。这样可以保证混凝土确定均有 95% 的保证率, 低于该标准值的概率不大于 5% , 充分保证了建筑物的安全, 由此推定, 抽样检查的几组试件的混凝土平均确定一定不小于混凝土设计标号, 其值大小取决于施工质量水平, 即取决于大小。通过公式计算可以看出, 施工人员不但要使混凝土平均确定大于混凝土标号, 更重要的是千方百计的减少混凝土确定的变异性, 即要尽量使混凝土标准差降到较低值, 这样, 既保证了工程质量, 也降低了工程造价。

3、混凝土质量控制的关键环节。混凝土质量控制包含两个基本内容: 1) 使混凝土达到设计要求的质量标准。2) 在满足设计要求的质量指标前提下尽量降低成本, 这两条要求实际上是尽量降低混凝土的标准差。混凝土的强度有一定离散性, 这是客观的, 但通过科学管理可以控制其达到最小值, 因此混凝土标准差能反映施工单位的实际管理水平,管理水平越高, 标准差越小。可以说, 混凝土质量控制实质上是标准差的控制。实际上控制标准差应从以下几个方面入手:一是设计合理的混凝土配合比。合理的混凝土配合比由实验室通过实验确定, 除满足确定、耐久性要求和节约原材料外, 还应该具有施工要求的和易性。因此实验室要设计合理的配比, 必须提供合格的水泥、砂、石。水泥控制强度, 砂控制细度、含水率、含泥量等, 石控制含水率及含泥量等。只有材料达到合格要求, 才能做出合理的混凝土配合比,才能使施工得以正常合理的进行, 达到设计和验收标准。二是正确按设计配合比施工。按施工配合比施工, 首先要及时测定砂、石含水率, 将设计配合比换算为施工配合比。其次要用重量比, 不要用体积比。最后要及时检查原材料是否与设计用原材料相符, 这要求供方提供两份同样材料, 一份提供给实验室, 一份给工地, 工地收料人员应按样本收料, 如来料与样本不符, 应马上向上级汇报, 及时更改配合比( 材料不合格不收料除外) 。三是加强原材料管理, 混凝土材料的变异将影响混凝土强度。因此收料人员应严把质量关, 不允许不合格品进场, 另外与原材料不符及时汇报, 采取相应措施, 以保证混凝土质量。四是进行混凝土强度的测定, 我们以 28 d 强度为准, 为施工简便和保证质量, 我们一般做 7 d 试块等, 以对混凝土强度尽量根据其龄期测定其发展, 以明确确定其质量。

三、高层建筑施工中沉降观测技术分析研究

随着社会的不断进步, 物质文明的极大提高及建筑设计施工技术水平的日臻成熟完善, 同时, 也因土地资源日渐减少与人口增长之间日益突出的矛盾, 高层及超高层建( 构) 筑物越来越多。为了保证建( 构) 筑物的正常使用寿命和建( 构) 筑物的安全性, 并为以后的勘察设计施工提供可靠的资料及相应的沉降参数, 建( 构) 筑物沉降观测的必要性和重要性愈加明显。现行规范也规定, 高层建筑物、高耸构筑物、重要古建筑物及连续生产设施基础、动力设备基础、滑坡监测等均要进行沉降观测。特别在高层建筑物施工过程中应用沉降观测加强过程监控,指导合理的施工工序, 预防在施工过程中出现不均匀沉降, 及时反馈信息为勘察设计施工部门提供详尽的一手资料, 避免因沉降原因造成建筑物主体结构的破坏或产生影响结构使用功能的裂缝, 造成巨大的经济损失。

四、结语

综上所述, 我们应从各个方面控制混凝土质量, 以确保整个工程质量, 进而保证企业信誉和发展。

参考文献

混凝土结构设计基本原理第6篇

关键词:混凝土桥梁;桥梁结构;设计原则;防水性;可操作性

中图分类号:TU37文献标识码: A 文章编号:

前言

混凝土桥梁桥具有施工速度快、行车安全、功能稳定等系统性优点,在桥梁建设市场中占据着相当大的份额,随着交通行业的发展,交通总量和荷载的不断增大,许多混凝土桥梁出现了耐久性不强的问题,所以必须在设计时期就展开专项的混凝土桥梁结构耐久性分析,从影响混凝土桥梁耐久性的设计原因入手,探寻出各种措施和方法有效提高混凝土桥梁的耐久性,在设计环节上确保混凝土桥梁长时间的安全和功能。

1混凝土桥梁设计中影响耐久性的原因

混凝土桥梁是一个系统,是由多个结构组件、功能部分构成的复杂体系,影响混凝土桥梁结构的耐久性来自于组件和部分的设计、施工和维护等各环节,其中设计是混凝土桥梁建设的初始,对于后续的施工和维护有着直接的影响,因此,对混凝土桥梁耐久性的分析应该从混凝土桥梁设计开始。当前混凝土桥梁耐久性出现失效和问题的主要方面在于设计结构和组件的过程中出现重视混凝土桥梁强度设计,而忽视混凝土桥梁的耐久性设计,这是当前混凝土桥梁耐久性不高的主要原因。其次,在混凝土桥梁结构和组件的设计中没有合理的防护和维护设计,导致混凝土桥梁在外部的影响下因风雨侵蚀、行车磨损、外力碰撞而导致耐久力的下降。其三,在混凝土桥梁设计过程中对于桥梁结构的材料、体系、构造和维护工作重视程度不足,片面重视混凝土桥梁结构强度的计算,认为只要结构上符合安全的需要,就可以做到万事大吉,这会出现混凝土桥梁计算图式的错误、受力路径的混淆,极容易造成混凝土桥梁局部组件和结构出现受力过大。最后,在混凝土桥梁设计中容易出现混凝土强度等级过低、钢筋直径过细、桥梁保护层厚度不足、桥梁构件截面积多小,这些不但会形成混凝土桥梁的病害隐患,而且容易产生对混凝土桥梁耐久性的影响。

2提高混凝土桥梁设计耐久性的原则

2.1结构合理原则

混凝土桥梁的桥跨结构和支撑结构的设计中,不论是横截面内(如受弯箱梁在弯矩平面内的传力路径主要是沿腹板传递,因此,其主筋应配置在靠近腹板的范围内为好等)还是细部构造(如拱上立柱与箱拱连接处横隔板沿立柱竖向设置较径向设置传力简捷;带挂孔的悬臂梁桥采用受拉型铰较传统受压型铰施工吊装方便、牛腿的受力与梁的受力吻合,细部构造优越等),传力路径简捷、明快,是较好的形式。

2.2系统性原则

系统性原则是强调在混凝土桥梁设计中要突出桥梁的整体性、连续性和冗余性。合理的桥梁结构具有整体性好的特点,在桥梁构件体形的变化上表现出平顺的特征,这不仅是美观的要求,而且构件体形变化平顺、节点处或边界处过渡平顺、结构整体性强是力流平顺的必要条件,同时,也可提高结构的承载能力和刚度。整体性和冗余性可以保证桥梁在运营状态下具有良好的使用性能及对局部损伤和破坏具有适当的抵抗能力,这些特点有利于结构抵抗诸如超载、地震等荷载。由于桥梁的伸缩缝长期暴露在大气中,使用环境比较恶劣,是桥梁结构中最易遭到破坏而又较难以修补的部位。近年来,国外日益强调通过减少甚至取消桥梁接缝(伸缩缝)和支座来保证桥梁的整体性和适用性,同时可以减少后期的维护费用。美国等国家已经修建了一些没有支座和伸缩缝的整体式桥梁,使用情况良好。此外,已经有越来越多的人开始研究整体式桥梁的可行性。

2.4操作性原则

混凝土桥梁设计的操作性原则体现在设计工作的可检性、可修性和结构上的替换性,人们对于桥梁有着固定的思维,认为桥梁属于永久性建筑,它的设计基准期为100年,那么在100年内就不应该出现部件的损坏与更换。实际上桥梁整体结构的寿命和结构各个部件的寿命是不等的,如橡胶支座的寿命一般在20年左右,钢拉索的寿命约10年~50年,钢结构油漆保护寿命约为20年,因而对这些寿命期低于结构寿命期的部件必须做到可检查、可维修、可更换。原苏联对其桥梁各组成部件统计的平均服务年限,有的长达百年以上,有的仅数年。桥梁构件达到使用寿命期而损坏,管理单位就应进行正常的更换,不能因未及时更换而引起或加速主要承重构件的损坏而影响桥梁的整体耐久性。桥梁设计时就应该为此创造必要的条件,如为更换支座应在盖梁上预留有放置千斤顶等提升设备的空间,也应为工作人员留有操作平台;否则将大大增加后期维护的困难和费用。国内很多桥梁设计中没有考虑构件更换的需要,甚至没有设置检查所需的通道。

2.3防水性原则

提高混凝土桥梁的防水性是确保耐久性的基本要求,良好的构造措施是实现这一要求的根本。特别是对于我国北方利用撒盐进行桥面除冰的地区,应特别注意在桥梁设计中处理好桥梁防水、隔水的问题,以阻止可能引起钢筋严重锈蚀的盐水的侵蚀。在冬季,寒潮可以带来桥面的冻胀问题,如果桥梁积水不能及时排出将会对桥梁形成危害,进而导致桥梁出现各种问题,影响桥梁的耐久性。

结语

综上所述,对混凝土桥梁设计工作的加强有利于提高混凝土桥梁的耐久性,应该行形成混凝土桥梁设计的基本原则和方法,以可造作、可借鉴的混凝土桥梁设计指导形成混凝土桥梁耐久性的保证。诚然,设计工作中要想提高混凝土桥梁的耐久性还应针对具体的建设和环境,应该将重点放在原则的应用和实际情况的实际运用上,采用高度重视混凝土桥梁设计工作的态度,将混凝土桥梁耐久性作为设计工作的一个重点,加以着重的分析和考量。

参考文献:

[1]贺方平.铁路客运专线混凝土桥梁结构耐久性的关键施工技术控制[J].科技创新导报.2010(31)

[2]张惠萍.混凝土配合比对结构物的耐久性影响分析[J].公路交通科技(应用技术版).2009(07)

[3]许颖强,赵尚传.桥梁结构耐久性设计的探讨[J].公路交通科技(应用技术版).2008(08)

混凝土结构设计基本原理第7篇

关键词:土建结构;设计;规范;研究

中图分类号:TU318 文献标识码:A 文章编号:

在建筑物的设计工作中,土建结构设计既关系到建筑结构的安全性和耐久性,又关系到建筑的适用性和经济性,因而土建结构设计工作是十分重要的。笔者工作多年,担负过许多建设项目的设计,在多年的工作实践中发现部分土建结构设计人员对现行土建结构设计规范缺乏正确理解或常有疏忽,有时给工程带来隐患,也有时使工程增加不必要的造价而造成浪费。有基于此笔者拟对这些问题提出讨论,希望能引起重视以避免重新出现类似的问题。

1 结构构造要求

1.1 砌体结构伸缩缝的最大间距在建筑设计中,为了防止或减轻房屋在正常使用条件下,由于温差和砌体干缩引起的墙体竖向裂缝,应在墙体中设置伸缩缝。在砌体结构设计规范(GB 50003-2011)中第6.5.1 条规定了砌体房屋伸缩缝的最大间距,例如钢筋混凝土屋盖当屋面设有保温层或隔热层时,伸缩缝的最大间距为50m。我国很多房屋长度在40m~50m 的砌体房屋,按上述规定没有设置伸缩缝,但不少房屋还是出现了温度裂缝,有的甚至比较严重。原因在于设计人员没有全面理解该规范条文。首先该规定是针对烧结普通砖的,对于目前墙体改革中新使用的混凝土砌块等房屋,该规范已强调由于混凝土有干缩性,应该将伸缩缝的最大间距乘以0.8 系数,也就是说应将伸缩缝的最大间距调整为50m×0.8=40m。其次该规范在注释中还强调了对于白天和夜晚温差较大地区,伸缩缝的最大间距应予以适当减小,因此,对于我国昼夜温差较大的地区来说,应适当减小伸缩缝的最大间距,使用烧结普通砖的上述砌体房屋,伸缩缝的最大间距应降为45m,使用混凝土砌块的上述房屋,伸缩缝的最大间距应降为35m。按调整后的伸缩缝的最大间距设计的砌体房屋再辅以其它措施后,很少再出现温度裂缝了。

1.2 混凝土结构中钢筋的混凝土保护层厚度

现行混凝结构设计规范(GB 50010 -2010)中,比02 规范更加重视对混凝土耐久的要求,而混凝土结构的耐久性与混凝土保护层的厚度是密切相关的,因此现行规范比原规范对混凝土保护层的厚度要求有所增加。例如在一类环境柱的混凝土保护层的厚度为30mm,特别对于基础,混凝土保护层的厚度增加得更多,因为基础与水有接触,所处环境更为不利。但在设计实践中往往有些设计人员忽略了这一变化,因而不能满足混凝土耐久的要求,造成混凝土质量下降。

2 结构材料选择

2.1 混凝土结构设计规范在设计工作中,在对混凝土的强度等级的理解与应用存在以下的问题与争议:规范4.1.2 条规定:钢筋混凝土结构的混凝土强度等级不应低于C20。这里存在一个对上述规范条文的正确理解与应用的问题,这就是作为基础垫层的素混凝土是否可以采用C15 混凝土,是否也必须采用C20 混凝土。在某些工程中对基础垫层的混凝土采用C15 后,不仅有的监理公司的监理人员对此置疑,甚至有的图纸审查人员也表示反对,都认为这违反了规范的要求,要求改正为C20。混凝土垫层采用C15 等级的混凝土,如改为C20 级混凝土没有必要而且增加造价造成经济上的浪费。分歧的原因是置疑的人员没有正确理解规范的条文,因为规范的4.1.2 条是指钢筋混凝土结构的混凝土强度等级不应低于C20,而作为垫层的混凝土是素混凝土不属于钢筋混凝土,垫层混凝土的作用是保护地基土在施工中不扰动,同时为基础的施工创造有利的工作条件,C15 混凝土完全可以达到。

2.2 砌体结构设计规范(GB 50003-2011)在砌体结构设计规范中,对结构材料选择的规定方面容易忽视的主要是第4.3.5 条对地面以下或防潮层以下的砌体、潮湿房间的墙,所用材料的最低强度等级提出的要求,其目的是为了保证结构的耐久性。例如对于地基土很潮湿的砌体,砖至少要求MU20,砂浆必须是水泥砂浆而且不低于M7.5。但在实践中很多设计人员单从砌体的强度要求出发采用MU15 砖、M5 水泥砂浆。这是违背规范要求的,应予改正以保证结构的耐久性。此外,上述这一要求不仅针对地面以下砌体,还针对地面以上的潮湿房间,例如卫生间等。

3 结构荷载取值

3.1 屋面可变荷载的取值和分布

并非在屋面全跨布置可变荷载产生的内力一定最大,往往在半跨布置可变荷载时结构可能更为不利。因此对于屋架和拱壳屋面除了全跨布置可变荷载时做出计算外,还应考虑半跨布置可变荷载,并做出相应的计算,然后按最不利的情况进行设计。对屋面可变荷载的取值应十分谨慎,特别是对于屋架和拱壳屋面,因为这类屋面荷载的分布对结构的内力很敏感。例如积雪荷载应按全跨均匀分布、不均匀分布,半跨均匀分布的几种情况进行设计,这样才能保证屋面结构的安全。

3.2 基础设计时的荷载取值

在建筑地基基础设计规范(GB 50007-2011)中第3.0.5 条明确做出了以下规定:计算地基变形时,传至基础底面上的荷载效应应按正常使用极限状态下荷载效应的准永久组合,不应计入风荷载和地震作用。计算挡土墙土压力、地基或斜坡稳定及滑坡推力时,荷载效应应按承载能力极限状态下荷载效应的基本组合,分项系数均为1.0。按地基承载力确定基础底面积及埋深或按单桩承载力确定桩数时,传至基础或承台底面上的荷载效应应按正常使用极限状态下荷载效应的标准组合。在设计实践中上述的各方面经常有设计人员没有正确执行。

3.2.1 计算地基变形时将荷载取值错误

地基变形计算时荷载取为荷载设计值而不是荷载的准永久组合值。由于荷载的设计值大约为荷载准永久组合值的1.4~1.6 倍,因此这一错误取值造成的影响更多,常常使原本地基变形不超过限值,错误的判断为地基的变形不满足设计要求。错误地将基础加深或将基础的底面积扩大,造成很大的浪费。

3.2.2 在确定基础底面积或确定桩数时,

荷载取值错误地取为荷载的设计值而不是荷载的标准值,由于荷载的设计值大约为荷载标准值的1.25 倍左右。因此这一错误将导致约20%的浪费,对整栋建筑而言,这一浪费是相当大的。

3.2.3 计算挡土墙的土压力、地基或斜坡的稳定时,荷载的取值错误地将永久荷载的分项系数取1.2,将可变荷载的分项系数取1.4,而忽视了规范别说明了的分项系数均为1.0 的规定。

4 结束语

建筑结构设计规范是国内结构设计的法规,是建筑结构做到技术先进、安全适用、经济合理的指导文件。为了更好的遵循这一法规,对结构设计规范应该熟悉,更应该正确理

解,保证土建结构设计质量。

参考文献

[1] 砌体结构设计规范.GB 50003-2011.中国建筑工业出版社.2011.

混凝土结构设计基本原理第8篇

Abstract: With the development of urban construction and building technology, large span high-rise building has become one of the main directions of the construction structure development. Therefore, the steel reinforced concrete structure in China has a broad application prospects. The paper introduces the structure of steel reinforced concrete, its advantages and the application situation of this structure in foreign countries.

关键词:活性粉末混凝土;减水剂;硅灰;粉煤灰

Key words: reactive powder concrete; water reducer; silica fume; flyash

中图分类号:TU52 文献标识码:A文章编号:1006-4311(2010)30-0057-01

1钢骨混凝土结构特点

钢骨混凝土结构具有强度大、延性好、抗震能力强、防火防腐性能好及便于施工等一系列优点,还可以大大减小构件的断面尺寸,明显增加了房间的使用面积,也使房间中的设备、家具更好布置,因此已越来越广泛地应用于高层及高耸结构、地震区的建(构)筑结构、承受大荷载的结构及大跨度结构中,尤其在地震多发的日本应用十分广泛。

钢骨混凝土中配置的型钢形式总的可分为实腹式型钢与角钢骨架的桁架式配钢两大类。

前者的强度、刚度、延性很高,远比后者优越,可用于大型、中型及很高的建筑中。但是,配角钢骨架比配实腹型钢可更多地节约钢材,其含钢量比钢筋混凝土结构稍大或基本相当,而其强度、刚度、延性则比钢筋混凝土结构仍有较大的提高,所以常在荷载、跨度、高度不是特别大的结构中采用。钢骨混凝土构件可以是梁、柱、板墙等组合构件。

目前实腹式钢骨混凝土结构应用更加广泛。钢骨混凝土结构的优点主要在于:

1.1 承载能力和刚度高,截面面积小钢骨混凝土结构中钢骨、钢筋、混凝土三种材料协同工作。钢骨和混凝土直接承受荷载,由于混凝土增大了构件截面刚度,防止了钢骨的局部屈曲,使钢骨部分的承载力得到了提高;另外,被钢骨围绕的核心混凝土因为钢骨的约束作用,使核心区混凝土的强度得以提高,即钢骨和混凝土二者的材料强度得到了充分的发挥,从而使构件承载力大大提高;由于钢骨混凝土结构不受含钢率限制,其承载力比相同截面的钢筋混凝土结构高出一倍还多。

1.2 抗震性能好与钢筋混凝土结构相比,钢骨混凝土结构尤其是实腹式钢骨混凝土结构由于钢骨架的存在,使得钢骨混凝土结构具有较大的延性和变形能力,显示出良好的抗震性能。

1.3 经济效果好与钢结构相比,钢骨混凝土结构用钢量大幅度减小,在承载相当的情况下,一般可节省钢材50%左右,造价可降低10%~40%;与钢筋混凝土结构相比,可节省60%左右的混凝土,并减小了构件的截面尺寸,增加了使用面积和层高,避免形成肥梁胖柱,减轻地基荷载,降低基础费用,因此具有可观的经济效益。

1.4 施工速度快,工期短钢骨混凝土结构中钢骨架在混凝土未浇注以前已形成钢结构,已具有相当大的承载能力,能够承受构件自重和施工时的活荷载,并可以将模板悬挂在钢结构上,不必为模板设置支柱。在多高层建筑中,不必等待混凝土达到一定强度就可以继续上层施工,加快施工速度,缩短建筑工期。

1.5 耐火性和耐腐蚀性好众所周知,钢结构耐火性和耐腐蚀性较差,但对于钢骨混凝土结构来说,由于外包混凝土的存在,在保证承载力提高的前提下,使构件耐火性和耐腐蚀性较钢结构得到了提高。

2钢骨混凝土结构在国外的研究及应用

钢骨混凝土结构最早出现在欧洲。欧美20世纪初就开始对钢骨混凝土柱进行了研究。对钢骨混凝土梁的研究是从加拿大开始的,相继在英国、美国、日本及前苏联等国家也开始了研究。但对钢骨混凝土构件的性能进行大量试验和研究是从20世纪50年代开始的,很多学者在计算模型、分析方法及简化计算等方面做了大量工作,提出了许多风格各异的适合本国实情的理论和方法,但概括起来不外乎钢结构和混凝土结构及叠加原理三方面的理论。欧美的计算理论基于钢结构的方法,考虑混凝土的作用,在试验基础上将试验曲线进行修正,突出反映在组合柱的计算上。前苏联关于型钢混凝土结构的计算理论是基于钢筋混凝土结构的计算方法,认为型钢与混凝土是完全共同工作的,因此试验证明前苏联计算方法在某些方面偏于不安全。第三种类型是日本建立在叠加理论基础上的方法,认为型钢混凝土结构的承载能力是型钢与钢筋混凝土两者承载能力的叠加。比较证明,日本的计算方法过于偏于安全。

3钢骨混凝土结构在我国的研究及应用