首页 优秀范文 结构优化方法

结构优化方法赏析八篇

时间:2023-06-27 16:02:05

结构优化方法

结构优化方法第1篇

【关键词】结构设计;建筑结构;优化技术;应用

中图分类号:TB482文献标识码: A

一、结构设计优化方法

依据设计的要求,把力学概念与结构优化设计进行有机结合,让参与计算的量部分可以以变量部分出现,进而形成结构设计优化方案域,运用数学手段,在域中找到可以满足要求的结构优化最佳设计方案。由此可见,结构优化设计不仅可以提高整体设计水量及设计质量,还可缩短设计周期,从而降低整体工程造价,提高经济及社会效益。房屋工程分部结构优化设计包括:基础结构方案的优化设计、屋盖系统方案的优化设计、围护结构方案的优化设计和结构细部设计的优化设计。对以上几个方面的优化设计还包括选型、布置、受力分析、造价分析等内容,在实施过程中,不仅要按照一切从实际出发的原则,更应该结合具体工程的实际情况,围绕房屋建筑的综合经济效益的目标进行结构优化设计。在满足设计要求后,在进行结构设计时应该尽量缩小刚度、质量中心的差异使平面布置规则,水平荷载就不会使建筑物有太大的扭转作用。为降低应力集中,竖直方向上应避开使用转换层。

结构优化设计的本质以力学理论和数学规划理论为理论基础,以计算机技术为工具,对建筑结构涉及到的各个变量进行寻找优化决策的先进的设计方法,其本质就是求极值问题。(1)优化数学模型。建立正确合理的优化数学模型是结构优化设计的关键步骤,基于正确的优化数学模型是得到正确优化结果的基础。例如,在优化模型中,数学模型中的等式约束个数应当小于设计变量的个数,这样才能求得最优解。(2)优化数学算法和优化迭代控制。对于建立的优化数学模型,虽然可用的优化算法有多种,但是采用不同的优化算法所得到的优化效果和所花费的求解时间会有差别。所以,快速、有效的数学优化算法也是结构优化设计的一项关键技术。(3)结构分析方法。绝大多数的结构优化设计问题难以采用解析法求解,而是采用数值法的方法。数值解的寻优实际上是一个优化迭代过程,而每次优化迭代都需要进行结构分析。实现以上提到的关键技术需要经过建立可靠的优化模型,然后采用适当的优化算法进行求解。这其中选择计算简便且正确率高的优化算法显得尤为重要。

二、民用建筑结构设计和经济性的关系

第一点,结构设计和用地之间的关系。在多层或者高层的民用建筑中,我们常说的总建筑的面积具体讲是每层的建筑面积之和,如果层数越多,那么单位建筑的面积分摊的占地面积相应的就会越小。然而随着层数日益变多,总体住宅高度也会不断上升,随之屋子间的距离也相应的变大。通过这一阐述我们了解到,用地节约的多少并不会根据建筑楼层增加而按一定的约数变高。

第二点,结构设计和造价之间的关系。一般建筑的楼层会在一定程度上影响到单位建筑的面积,但对每部分的结构来讲,具体的影响程度是不一样的。在屋盖的区域,无论有多少层,都统一使用统一相同的房屋盖。它跟层数增加无关,所以对屋盖的资金投入也不会加大。因此,屋盖处的单位面积资金投入会根据层数的不断上升而表现出很明显的降低。在建筑的基础处,每层都共同使用一个基础,因此随着层数不断增加,相应的基础结构承受的荷重就会增加,因此我们必须要增加基本的荷载力。基础地区的单位开销虽然会根据层数的增加而呈现出降低的意思,但是这种意思并不像屋盖那样如此明显。一些承重体,比如墙、梁或者柱等,会随着层数的不断增加而不断地增加荷载能力以及抗震能力等,相应的这些分部的单位房屋造价会有一定的提升。

第三点,高层住宅结构设计与经济性的关系。一般而言,住宅层数高矮将本质的影响住宅开销,其根本原因乃是伴随层高不断上升,墙体面积和柱体积也会慢慢上升,而且会加大结构自重,进而还会增加柱以及基础承受荷载力,于是让电气以及水卫的管线同比例变长。如果将层高降低,那么可以有效地节省材料物资,而且还可以节约能源等,对于抗震非常有利,能最大程度的节约金钱输出。另一方面,减少层高不但可以降低房屋的高矮,有效地缩小建筑和建筑间日照的距离,所以降低层高也在一定程度上对于节约土地资源有很大的作用。

三、结构设计优化技术应用实践

结构方案的建立过程即工程结构设计。伴随急速更新发展的计算机硬、软件产业,凭借计算机、力学、数学一系列方法,将结构设计做到最优化技术推广。结构优化设计及传统结构设计其设计原则和过程是相同的,不同之处在于传统设计缺少安全、经济性作为衡量准则。最优设计则是在安全、经济准则基础之上,利用计算机作为辅助技术,非常便利地实现了分析计算、设计、出效果图等整套程序的自动化,大大提升了设计整体效果及质量。为了达到降低工程造价之目地,在不更改使用性能的基础之上,就要对结构进行最优化设计。由此可见结构设计优化技术的应用已经是较为宽广的课题之一。它不仅应用于项目的前期、整体、抗震设计,在旧房改造期间的各个环境均有广泛应用。结构设计优化技术在应用实践中应注意的问题如下:

1前期方案设计期间将结构设计优化参与其中

建筑方案设计前期如有一个优秀的、合理的设计方案,并参与结构设计优化,就会争取到非常优秀的开端。但目前在前期设计方案中结构设计优化参与其中的并不多,如果能对建筑类别有所针对,并进行合理选择结构设计优化方案,将降低建筑的总投资成本,因此在建筑方案设计初期应注意建筑方案的结构优化设计,考虑结构的合理及可行性。

2概念设计结合细部结构设计优化

概念设计主要作用于无具体数值量化现象,比如无确定性的地震设防烈度,现实难免与计算式存在区别,那么设计时应采取概念设计方法,使数值成为辅助及参考根据。为达到最佳优化设计效果,设计人员应该灵活运用结构设计优化方案。与宏观把握相对应的,设计的过程同时要注意对于细部的结构设计优化,比如现浇板中的异形板拐角方向容易出现的裂缝,可归结为矩形板。钢筋选择时应注意:I级钢和冷轧带肋钢市场价格差不多,但是他们的极限抗拉力相差却相当大,所以在塑性满足要求的情况下,现浇板的受力钢筋就可选择冷轧带肋钢筋。在做里面设计的时候,外立面上的悬挑板及配筋,应在满足基本规范要求之上,以达到安全、经济之目的。

3结构设计优化―――下部地基基础

桩基础类型的选择,要依据现场地质条选择最为合适的结构设计优化方案,以降低工程总造价为目的。例如对灌注桩桩长的选择影响较大的桩端持力层的选择,要多进行比较,最终确定最为合适的方案。

总之,建筑是凝固的艺术,好的建筑师总希望可以通过建筑来合理的表达本身设计意图,希望拥有艺术性以及实用性能的美妙融合。建筑结构设计师们应严格遵“安全、经济、合理”的设计理念,努力探索更合理的结构设计方案,保证建筑工程取得良好的经济效益和质量效益。

参考文献:

结构优化方法第2篇

关键词:建筑结构;设计优化;模型;计算

随着经济的发展,人们的生活水平也得到了一定的发展,居民对于购房过程中逐渐考虑多方面因素,无论是安全性还是经济性和外观设计,都成为了主导消费者选择的因素。因此在建筑结构设计中,不仅要对施工过程是否合理进行考虑,还要实现对设计方案的不断优化,从经济型以及安全性和外观设计等方面提高建筑的基本价值。文章对建筑结构的设计优化方案在房屋结构设计过程中的作用进行研究分析,希望能够更好的促进我国建筑设计者的创新意识的发展。

1结构设计优化方案的理论分析

站在理论层次来看,在进行结构设计优化的过程中,要充分考虑到安全性以及可靠性在建筑整个过程的发展和体现。与此同时,还要尽可能的保证建筑物的设计美观和结构合理。因此要想达到这些目标,需要不断的对结构设计方案进行合理的分析设置,并对计算方式进行合理的选择,以便能够更好的满足当前的既定目标。在实际设计的过程中,想要对房屋工程结构进行优化,就需要从围护结构以及屋盖系统和其他细节部分进行考虑。采取合理的方法对其造价以及结构进行整理的安排优化,不断实现经济性以及安全性目标的达成。为了更好的适应时代的发展需求,建筑结构的设计中要充分创新,不断提高设计的特殊性以及新颖性。从对称性以及独特性的角度出发,对建设设计方案进行不断的修改完善,并运用实际所学知识来实现对构架的合理布置,避免使用转换层机构。对不规则建筑设计的原则要进行恰当的处理与使用,从根本上完善设计方案,实现设计过程的整体优化。

2结构设计优化技术具体运用

2.1建立优化结构相关模型

在对房屋结构设计中,要充分对建筑结构设计优化方法进行使用。在具体实施的过程中,可以从三个步骤来实现最终的设计优化目的。(1)对设计变量的选择。在进行设计变量的选择过程中,要对影响建筑结构的相关参数进行系统的研究分析,并进行综合考虑选择。将对建筑结构影响的参数作为当前模型中的设计变量,这些变量主要包含损失的期望值以及结构的过后家和约束控制的相关参数等,最大程度的保证设计便变量选择的合理性。(2)确定目标函数。在进行实际优化的过程中,除了对必要的参数进行选择之外,还需要寻找到一些相关条件来实现对工程造价的降低,而这些条件主要包括相关建筑截面的具体尺寸以及钢筋的截面积等。(3)确定相关约束条件。在对房屋结构设计优化过程中,要保证房屋结构设计的合理性以及可靠性,确保相关的设计条件能够得到满足。而设计优化过程中的约束条件主要有裂缝宽度、结构强度、应力约束以及结构体系约束和尺寸约束等,在进行结构设计的过程中,要充分的对目标约束条件与实际情况形成对比,确保约束条件能够满足相关的规定要求,从而力求设计达到最佳。

2.2选择合理的优化计算方案

在进行方案设计的过程中,设计者要充分考虑当前的施工过程中的内部和外部环境,确保各种因素能够在可行的范围之内。借助对约束条件以及非线性优化问题等的具体研究和分析,最计算方案之中选取最适合当前施工状况的方案,从而确保方案设计更具有合理性。而在对设计方案进行优化的方法选择中,拉氏乘子法、复合形法以及Powcll法使用相对较为频繁。

2.3对程序问题进行设计优化

在对房屋结构设计的优化过程中,通过确定设计变量以及目标函数和约束条件从而实现对计算方法的合理选择,最终不断的实现对房屋结构设计的优化活动。而在优化过程中,还需要对对相关程序进行创新设计,以便于能够更好的对设计过程中出现的任何一个问题进行运算,确保设计方案的合理性。

2.4结果分析

在进行计算的过程中,要对计算结果的合理性进行再次的分析研究,最终来选取适合相关房屋结构设计的方案。在方案选取的过程中,要对能够产生影响的诸多因素都考虑在内,并且从多角度来看待这些因素所产生的问题,这能够更好的促进设计优化的作用,从而确保设计方案的合理性以及安全性。在施工问题上,设计方案能够更好的优化当前资源使用的程度和效率,确保资源不被合理的浪费的同时又能够保障相关技术支出不受缩减,其能够起到一个整体的统筹作用。

3结构设计优化技术的实践应用

在对于项目工程设计的过程中,无论前期设计还是后期设计,无论旧房改造还是抗震设计,结构设计优化技术运用在工程的每一个环节之中。因此,在结构设计过程中,要合理的选择结构的形式以及对设计方案进行深层次的优化,将概念设计和细节设计相结合,从而实现对方案最终的优化;在结构设计优化技术的实践作用之中,要充分将其运用在对地基基础的设计问题上,其能够更好的帮助房屋建筑实现安全性和可靠性,确保房屋建造的质量。

4结束语

分析建筑结构设计优化方法,可以得知,其对于房屋结构设计的作用是无法取代的。因此,选择合理的优化方案能够保证房屋建设在达到相关建设标准要求的基础上实现经济最大化。建筑结构的设计优化是一个相对复杂的概念,只有不断的加强研究和分析才能够更好的实现其在现实生活中的运用。文章在对建筑结构优化设计过程以及问题等多方面分析角度下,希望能够给相关的设计人员带来一定思考和启发,从而提高建筑结构的优化方案设计,实现房屋建造的安全性以及稳定性。希望文章对建筑结构优化设计方案的论述,能够促进读者对这一概念的更好的理解和思考。

作者:郭睿 单位:中铁工程设计院有限公司

参考文献:

[1]范国兴.建筑结构设计优化方法在房屋结构设计中的应用研究[J].鸡西大学学报,2014,(8):23-25.

结构优化方法第3篇

【关键词】 建筑;结构设计;优化

随着业主对建筑物安全性、适用性提出越来越高的要求,建筑结构设计优化成为企业在激烈竞争中脱颖而出的关键。结构设计优化必须通过反复推敲,结合力学等多门学科知识一起分析,确保数据与规范要求相一致,最终确定最佳方案。尽管目前设计单位众多,而且多种设计软件可供选择,但是设计思想普遍保守,很难在结构设计中实现技术与经济并行的目标,为了有效控制造价,促进企业、国家发展,优化结构设计势在必行。

1 结构设计及其优化的含义

在结构设计中,主要从力学角度分析尺寸、刚度等是否符合构造需求,通过这种设计得到的方案可以通过变量或者参数的形式展现出来,变量或者参数最终构成目标函数。通过传统的结构设计得到的是可行性设计,基本是基于安全角度确定的,但是并不是最优设计方案。下面根据两个工程实例的数据分析,对房屋结构设计中设计优化方法的探讨。结构设计优化可以实现量的优劣取舍,得到最佳方案。

2 建筑结构设计优化实例分析

2.1 实例一

广东某化工有限公司-商业广场,工程等级二级(地下2层,地上9层,多塔框剪,65162.8O)。该工程地下室超长,长边约280米,短边约30米,成功用不设变形缝设计解决了混凝土开裂和防水难题,但是工程经济性及使用空间的合理性却遭受考验。地下室楼盖选型对于控制工程造价有直接影响。通常楼盖形式可以分为梁板式与无梁楼盖两大类,其中梁板式又分为双向和单向,无梁楼盖分为实习和空心。下面按柱距8.9mx8.9m的各种楼盖结构形式对比计算分析,并作出如下材料用量分析表:

最终本工程负一层楼盖采用无梁楼盖,主要考虑到地下室净高及减少基坑开挖深度;地下室顶板楼盖采用主次梁(单向板)楼盖,主要考虑到造价最低及本工程地下室顶板作为上部结构嵌固端,同时需满足规范相关规定要求应采用梁板式结构。

总结: 1、从以上《材料用量分析表》中可以看出梁板式楼盖中主次梁(单向板)结构形式的单位面积造价最低,井字梁结构形式的单位面积造价最高,十字梁结构形式单位面积造价介于两者之间; 2、主次梁楼盖与无梁楼盖单位面积用钢筋量比较接近,但无梁楼盖混凝土用量较多,使其单位面积造价高于主次梁楼盖; 3、主次梁结构形式由于其中一个方向框架梁梁高与次梁同高,设备管道可以垂直于次梁布置,这样可以提高地下室净高,无梁楼盖考虑150mm操作空间其地下室净高比主次梁结构提高了100~200mm,但比主次梁结构增加了近三分之一的重量,增加基础造价; 4、无梁楼盖施工简洁、施工速度较快,模板简单,能够有效满足工期要求,视觉美观,无梁楼盖由于自重较重,故对地下室抗浮有利; 5、当地下室层数较多(3层以上)地质条件较好时,结构抗浮要求较高,可采用无梁楼盖结构形式增加结构自重有效的抵抗水浮力以降低抗浮设计难度;当地下室层高受限制时采用无梁楼盖或空心楼盖结构形式可较好的达到地下室净高要求; 6、当地下室层数较少(2层)抗浮水位较低时建议采用主次梁结构形式,以减轻结构重量; 7、对于地下室顶板,当做为上部结构的嵌固端时,由《建筑抗震设计规范》6.1.14条:“地下室在地上结构相关范围的顶板应采用现浇梁板式结构,相关范围以外的地下室顶板宜采用现浇梁板结构”,故根据规范要求,建议采用主次梁(单向板)结构或梁板加腋大板结构。

以上结构经济性对比仅限于平面结构构件的对比,实际上整个地下室工程的经济性应充分考虑地下室层高、埋深、基坑的开挖、支护结构等各项工程的综合造价。

2.2 实例二

广东省韶关市某镇政府办公楼工程,建筑层数为四层,砌体结构,并选用条形基础,工程钢筋用量如下表如示:

通过上表可以发现该工程总含钢量为30.977kg/m2,该值偏高,因此可以通过结构设计优化在此环节控制造价。

工程中采用了钢筋混凝土构造柱,构造柱能满足抗震与抗剪要求,但不用承受竖向荷载。构造柱大多设置于横纵墙交线,也设置在墙转角等处,为了使房屋稳定性得到提升,构造柱的尺寸较大。本工程位于六度区,构造柱按照规定应当设置在电梯间四角、外墙四角和对应转角处、隔12m或单元横墙与外纵墙交接处、楼梯间对应的另一侧内横墙与外纵墙交接处。本工程在规范中要求设置构造柱以外的多个部位设置了构造柱,为了控制造价可以将规范要求外的构造柱去除。根据抗震规范,砌体结构建筑的构造柱截面不得小于180mm×240mm。箍筋间距不超过250mm,并加大四角处布置构造柱的截面。在本工程采用的构造柱规格为360mm×240mm、240×480mm等,钢筋直径均为14mm。将钢筋直径改为12mm,并统一构造柱规格为240mm×240mm,可以使钢筋用量得到控制。

该工程使用现浇板,在设计初期,多由经验公式确定板厚,该板厚只作为暂定值,为了精确确定板厚,还需进行裂缝和挠度验算,并逐渐降低板厚后反复验算,如果板厚降低后仍满足设计要求,则优化是可行的。本工程中4.1米开间房间板厚设计是130毫米,经过挠度图分析和裂缝分析,板厚设计偏保守,经两次降低板厚与验算,最终确定110毫米符合设计需求。本工程采用的现浇梁也有优化空间,内廊处的梁是多余的,而且主梁为跨度取值的1/10。该比例相对保守,根据本工程开间不大,结合考虑梁的经济配筋率主梁梁高取跨度1/12~1/15也可以满足设计要求。降低部分圈梁高度,原圈梁高度为了配合建筑门窗统一为600mm,现降低东西向无窗及小窗墙体圈梁梁高。

基础造价在工程总造价中比重大,埋深、尺寸等都直接影响总造价。由于基础的影响因素众多,所以基础设计优化的途径更多,潜力更大。在以往的结构设计优化尝试中,盲目增加基础宽度及埋深都未取得良好效果,有时还适得其反。一般层数较低的工程条形基础、灰土基础与砖基础应用都比较广泛,本工程选择钢筋混凝土基础,基础埋深1.70米。通过分析土层较为理想,基础高度具有优化空间。基础埋深偏高,而且施工现场地质情况良好,基础埋深设置为1.40米即可满足设计需要,后经地基土浅层平板载荷试验,承载力满足要求。

经过上述优化,钢筋使用量降低约21t。仅从钢筋角度就已减少大量成本,因此可以说明建筑结构设计优化在控制造价方面有突出作用。总结上述优化措施如下:合理确定构造尺寸与钢筋直径;简化梁板柱受力体系,省去不必要的梁设置;降低圈梁高度;合理选择基础形式及埋深。

3 结构设计优化的注意事项

结构设计优化确实可以有效控制工程造价,提高企业经济效益,但是具体实施过程中却必须克服一些困难:施工单位为了加快工程进度,没有严格按照设计进行,从而无法实现设计效果;部分设计人员工作经验不够丰富,从而在设计时顾此失彼;将过多的精力与时间放在建筑局部的设计上,缺乏大局观,对整体造价考虑过少;一味追求控制工程造价,使建筑物的安全性和耐久性得不到保证,实际施工过程中偷工减料现象严重。以上几点都是影响建筑结构设计优化实际效果的重要因素,在设计过程中必须杜绝这些现象的发生。

4 小结

人类的资源不断被消耗,如何提高资源利用率是每位建筑结构设计人员必须面对的问题。建筑结构设计优化是控制工程造价的重要手段,但是也不能在追求效率的同时忽略质量,既省材又实用是进行结构设计优化时遵循的重要原则。

【参考文献】

[1]张阅荣.房屋结构设计中的建筑结构设计优化[J].建筑工程技术与设计,2014,(20):734-734.

[2]许宗雨.探析房屋结构设计中建筑结构设计优化方法的应用[J].江西建材,2014,(16):36-37.

结构优化方法第4篇

关键词:建筑结构;设计;优化;方法

中图分类号:TU3文献标识码: A

一、结构优化的理念

在分析过程中,需要在满足各种参数的情况下,并求出满足不同的约束条件,且使得目标函数能得到最小值的设计方法。

(1)数学模型建立:根据需要分析的结构对象,对之进行相对应的数学建模。(2)变量的设计:变量即为可以在某种程度上描述结构的量,包括设计截面的几何参数等信息,可以是柱的高度等等。变量又包括连续性变量和离散型变量,连续性变量可以实现连续变化,而离散的则不能实现连续变化。(3)目标函数:通常可以衡量设计好坏的一个较为重要的指标,可以反应设计的性能,也可以反应一些经济性能。(4)约束条件:通常可以大致的分为几何约束以及性态约束。通常几何约束指的是在几何尺寸等方面加以限制,几何尺寸不会发生太大的变化。而性态约束通常是指的是结构的固有的一些性质,如震动频率等不发生变化。

二、建筑结构设计优化的一般方法

单纯从建筑角度来讲,结构设计优化主要分为房屋工程分部结构的优化设计和总体结构的优化设计两种。一所房屋的设计建造,要根据具体情况,综合考虑房屋建筑的人文要求、经济要求和周围环境要求等。合理充分利用资源,实现各种要素的和谐共存,是建筑房屋结构设计优化的基本理念。

(一)建立结构优化的模型

实现建筑结构设计优化,首先需要建立一个数学模型,重现房屋的各项指标和影响因素间的复杂关系。可以按照以下几个步骤建立模型:

1、合理选择设计变量

设计变量通常优先选择对建筑结构影响大的参数,即和设计目标直接相关的那些内容,如损失的期望C2和结构的造价C1等,还有和限制条件相关的因素,如结构的可靠度PS等;为了减少设计量、计算量和编制程序的工作量,还可以把部分因素用预定参数来代表,这些参数通常具有影响细微、波动不明显的特点,往往通过局部调整或结构本身就能满足相关要求。

2、确定目标函数

出于建造成本的考虑,需要建立一组函数,通过这组函数可以准确描述预定条件中截面几何尺寸、钢筋的截面积和相应的失效概率之间的关系。

3、确定约束条件

房屋建筑安全可靠是房屋结构优化设计必须满足的基本条件,以此出发可以确定优化设计的约束条件。裂缝宽度、结构强度、构件的大小、结构应力、结构体系规格、可塑程度、确定程度等都是常见的约束条件。设计者要充分比较分析目标约束条件和实际约束条件,确保每个目标约束条件都有的放矢,符合实际,从而为设计优化提供根本保障。

(二)设定计算方案

以提高安全性、耐久性和适用性为目标的建筑结构设计优化,往往具有约束条件复杂、变量众多、函数非线性的特点,为了方便分析计算,通常采用将有约束的优化问题转换成无约束的优化问题的方法求解。拉氏乘子法、复合形法、Powell法等都是常用的优化计算方法。

(三)程序设计

由于计算量巨大,计算过程复杂,为提高结果准确性和精度,通常利用程序来实现以提高安全性、耐久性和适用性为目标的房屋结构设计优化的计算过程。编写的综合程序要完全符合优化设计模型和计算方案,并具有功能完整、用途齐全、运转高效等特点。

(四)结果分析

结果分析是房屋结构设计优化过程中非常重要的一步,它直接关系到优化设计方案的最终选择。程序运算的结果只是为房屋结构设计优化提供参考依据和备选方案,并非最终结果。由于上述模型函数主要体现的经济成本上的优化,在结果分析时,设计者需要把更多的因素纳入思考范畴中,在详细地比较分析基础上,选择出最

佳的设计方案。前文已经提到,现代社会的建筑,不仅要满足实用功能,同时还需要满足使用者的审美需求。造价成本和工程质量不再是优化设计的唯二标准。设计者需要从安全性、耐久性、使用功能、经济效益、施工要求、美观程度,以及和周围环境的和谐统一等方面进行全方位多角度的考虑,要分析各种因素的影响,从使用者、建设方等多个角度考虑,综合各方意见进行比较。任何考虑上的偏颇和疏漏都有可能造成建筑设计上的缺陷,从而影响建筑的正常使用。必须平衡使用各种资源,才能实现结构设计的最优化。

三、结构优化设计的应用

把结构优化设计应用于项目的建筑的前期设计、整体设计、抗震设计以及旧房改造等设计的各分部环节,从而创造较大的社会效益和经济效益。因此,在按照结构设计优化的方法和结构优化技术模型进行实践应用的过程中,要注意以下几个方面:

(一)要注意前期参与

在进行设计过程中,前期方案的确定在很大程度上决定着建筑的总投资。如果在进行前期方案结构设计过程存在的普遍问题没有得到及时的处理和解决,就会在一定程度上影响建筑师设计的合理性、可行性以及科学性。在实际中,建筑布局的不规则性往往会给结构设计造成不同程度的影响,这不仅会增大结构设计的难度,同时还有可能会增加建筑设计的总投资。在方案的初期就要采用科学的结构优化设计,配合建筑功能对明显不合理的方案予以否决。同时,可以确定一些结构设计基本参数,不需要等到施工图阶段再研究。参数包括:建筑物所在地、风雪荷载取值、层数、抗震设防烈度和抗震等级、有无不良地质、砖墙材料、当地能施工的最高混凝土强度等级等。

(二)概念设计与细部结构设计优化

由于未能充分考虑结构的空间作用、非弹性性质、材料时效、阻尼变化等多种因素,也存在着不准确性。概念设计就是工程抗震问题不完全依赖“计算设计”解决,而立足于工程抗震基本理论及长期工程抗震经验总结。在进行概念设计过程中,应把握好能量输入、房屋体形、结构体系、刚度分配、构件延性等几个主要方面,从根本上消除建筑中的抗震薄弱环节,再辅以必要的计算和构造措施,就有可能使设计出的房屋建筑具有良好的抗震性能和足够的抗震可靠度。

体现概念设计需要从以下几个方面入手:第一选择工程场址时,应该进行详细勘察,搞清地形、地质情况,挑选对建筑抗震有利的地段,尽可能避开对建筑抗震不利的地段,不得选择抗震危险地段。第二建筑的动力性能基本上取决于它的建筑布局和结构布置。建筑布局简单合理,结构布置符合抗震原则,就能从根本上保证建筑具有良好的耐震性能。第三在建筑的方案设计阶段,研究建筑形式的同时,需要考虑选用哪一种结构材料,以及采用什么样的结构体系。因为不同的结构体系,其抗震性能、使用效果和经济指标亦不同。在选择结构体系的同时,也要考虑建筑物刚度与场地条件的关系,这样才能选择更为合理的基础形式,从体系上完成优化设计。第四合理选择多道抗震防线。一个抗震结构体系,应由若干个延性较好的分体系组成,并由延性较好的结构构件连接起来协同工作。在体系内外部设置较多的赘余度,有意识地建立起一系列分布的屈服区,以使结构能够吸收和耗散大量的地震能量。第五建筑刚度、承载力和延性需要合理协调。结构刚度越大,可以减小结构侧移,减轻地震灾害的损失。但结构刚度大,要求结构具有与较大地震反应对应的较高水平力,同时,提高结构的抗侧移刚度,往往是以提供工程造价及降低结构延性指标为代价的。因此,在确定建筑结构体系时,需要在结构刚度、承载力及延性之间寻求一种较好的匹配关系。第六处理好结构体系中的非结构部件。比如说高层建筑应尽可能地选择轻质填充材料,不仅是为了减轻整个建筑的重量,还是为了减轻填充墙体对整个结构体系的影响。因此需要妥善处理那些非结构部件,以提高建筑的抗震可靠度。

在设计过程中,还要注意对建筑结构细部进行优化。如现浇板结构中的异形板拐角处,这是应力比较集中位置,需要进行加强处理;如果不引起重视,此处就会很容易出现裂缝。“艹”字形、“井”字形等外伸长度较大的建筑,当中央部分楼板有较大削弱时,应加强楼板以及连接部位墙体的构造措施,必要时可在外伸段凹槽处设置连接梁或连接板。楼板开大洞的情况越来越多,楼板开洞削弱后,根据建筑布局情况,可以采取加厚洞口附近楼板,提高楼板的配筋率,采用双层双向配筋;也可以在洞口边缘设置边梁、暗梁;还可以在楼板洞口角部集中配置斜向钢筋。还要注意选择适当的钢筋,根据当地的建筑材料供应情况,做到就地取材。同时在做设计时,外立面上的悬挑板配筋,既要做到安全要求,又要满足施工要求,实现较好的效果。

(三)下部地基基础优化设计

地基基础的优化设计不仅可提高整个建筑的稳定性,还可能直接影响整个工程的总造价。因此,在建筑设计中要根据上部建筑的结构体系及建筑场地的关系,选择科学合理的方案。若场地条件满足天然基础要求,往往首选天然基础,因为造价要相对低一些。若要选择桩基,需根据现场地质条件、水文环境以及施工条件选择合适的桩基类型,最大限度地降低工程造价和投资。因为在实际施工过程中,桩端持力层深度决定着灌注桩桩长及基础施工工期。所以要对方案进行比较,尽量做到科学合理,经济可行。在遇到有溶洞的建筑场地时,应探明溶洞分布情况、大小及溶洞深度,根据溶洞上部土层情况选择方案。若溶洞比较稳定,且溶洞上部土层可以作为基础持力层,应选上部土层作为基础持力层,尽量避开处理溶洞。有时还要比较溶洞处理和减少上部建筑重量对投资的影响,两者需要择优选择。

四、结语

为了达到安全经济的原则,就需要在建筑结构设计中,采取优化设计方法,利用有限的空间和资源,发挥最大的效用,做到工程的安全性、经济性、实用性和科学性。

参考文献:

[1]何冬霞.建筑结构设计优化方法在房屋结构设计中的实际应用[J]. 中华民居(下旬刊),2013,10:18-19.

结构优化方法第5篇

【关键词】:房屋建筑 结构设计优化设计方法

中图分类号: TU318 文献标识码: A 文章编号:

房屋工程建设中房屋结构优化设计对于整个工程的作用是不容忽视的。因为房屋建筑的目标就是用最少的资金达到提高整个工程结构的坚固性和可靠性,从而产生最大化的经济效益。优化设计方案是控制造价和节省工程开支最有效的方法之一,通过合理的建筑结构方案优化设计方法更佳合理进行工程资源配置,以期达到房屋建筑结构设计的安全性、适用性和经济性目标。在房屋建筑工程结构设计工作中,特别是常见的钢筋混凝土住宅结构体系进行优化时,要综合考虑从结构整体的布局以及具体构件两方面的因素,也是建筑结构优化设计的主要内容所在,因此,要达到结构优化设计的目标,对当前房屋建筑工程师就提出了更高的要求,要求工程师不仅能够对建筑结构和构件受力的特征有充分的把握,还要能够根据构件设计的经验提出对房屋结构设计更加合理有效的优化设计方法。

一、房屋建筑结构优化设计的措施

1、加强剪力墙的设计

影响压弯构件的延性或屈服后变形能力的因素有:截面尺寸、混凝土强度等级、纵向配筋、轴压比、箍筋量等,其主要因素是轴压比和配箍特征值。剪力墙墙肢的试验研究也表明,轴压比超过一定值,很难成为延性剪力墙。剪力墙构造边缘构件的配筋区分底部加强部位和其他部位,除应满足受弯承载力要求外。底部加强部位的构造边缘构件采用箍筋,其他部位采用拉筋,其拉筋水平间距不应大于纵向间距的2倍,转角处宜采用箍筋。当抗震墙的构造边缘构件的端柱承受集中荷载时,其端柱的纵向钢筋、箍筋直径和间距应满足柱的相应要求。

连梁是对剪力墙结构抗震性能影响比较大的构件,采用斜交叉配筋方式,可以大大改善连梁的延性。剪力墙是平面构件,在其自身平面内有较大的承载力和刚度,平面外的承载力和刚度小,结构设计时一般不考虑剪力墙平面外承载力和刚度。抗震设计的剪力墙结构,应力求使两个方向的刚度接近。

框架一剪力墙结构设计的关键是剪力墙的数量和布置。在一榀很长的框架中(为纵向),剪力墙不宜集中布置在该榀框架的两尽端,以避免在温度变化、结构涨缩时由于两端的约束作用而造成楼盖梁板开裂。剪力墙的间距不宜过大。

2、加强设计中建筑结构形式的选用

不同的建筑类别和功能要求决定了户型的选择,当前越来越多的房屋建筑为高层建筑结构,除了要合理选择结构抗侧力体系外,要特别重视建筑体形和结构总体布置。建筑体形是指建筑的平面和立面;结构总体布置是指结构构件的平面布置和竖向布置。建筑体形和结构总体布置对结构的抗震性能具有决定性的作用。

(1)加强结构抗震设计。结构抗震设计有许多不确定因素(地震特性、结构扭转等),进行精确的抗震计算是非常困难的。结构的抗震设计除了进行细致的计算外,要特别注重结构概念设计。概念设计是指在结构设计中,结构工程师运用“概念”进行分析,做出判断,并采取相应措施。根据概念设计,抗震房屋的建筑体形和结构总体布置应符合如下原则:采用规则结构,不采用严重不规则结构;确的计算简图和合理的传力路径;具有必要的刚度和承载力,具备良好的弹塑性变形能力和消耗地震能量的能力;部分结构或构件破坏不应导致结构倒塌,增加超静定结构的次数。满足抗震设计原则:即:“强节弱杆”、“强竖弱平”、“强剪弱弯”;置多道抗震防线,形成两道或多道的抗震防线,增强结构抗倒塌能力。第一道防线是地震时先屈服的结构单元和构件,应是延性大、耗能力好的结构单元或构件,如剪立墙结构的连梁等。第二道防线的结构单元也有足够的抗震能力,如框架-剪力墙结构的框架。

(2)加强底部框架剪力墙的设计。高层钢筋混凝土框架—剪力墙结构中的剪力墙为第一道防线的主要抗侧力构件。为了提高其变形和耗能能力,对框架—剪力墙结构中的剪力墙墙厚、墙体最小配筋率和端柱设计等做出了较严格的规定:剪力墙的厚度不应小于160 mm且不应小于层高的1/20,底部加强部位的剪力墙厚度不应小于200 mm且不应小于层高的1/16。剪力墙的周边应设置梁(或暗梁)和端柱组成的边框。端柱截面宜与同层框架柱相同,并应符合有关框架构造配筋规定;剪力墙底部加强部位的端柱和紧靠抗震墙洞口的端柱宜按柱箍筋加密区的要求沿全高加密箍筋。剪力墙的横向和竖向分布钢筋,配筋率均不应小于0.25%,并应双排布置,拉筋间距不应大于600mm,直径不应小于6mm。框架—剪力墙结构的其他抗震构造措施,应符合对框架及剪力墙的有关要求。

二、结构设计优化技术在房屋建筑结构设计中的应用

1、房屋建筑结构设计中的概念设计方法

在房屋建筑工程中,对于同一个建筑方案可以有不同的实现途径和结构设计;这是由于房屋建筑结构的参数、荷载、所用的建筑材料的不同和差异都会导致各项的取值不尽相同的,因此,对于房屋建筑结构设计的细节处理方法也不是唯一的,而是需要工程师们根据多年设计经验和实际操作理论和工程进展情况自行判断,计算机无法解决诸多不确定问题。工程师们的判断根据房屋结构设计规律的指导下进行主观的概念设计,而这种概念设计是工程师在多种备选方案中的必要的选择过程。

2、概念设计处理的实际建筑设计问题

概念设计帮助工程师使房屋建筑工程结构不受来自自然和人为不确定因素影响和破坏,即使产生破坏概念设计也可将这种破坏程度降至到最低点。因此,概念设计为了达到这一目的。就要首先考虑如何使房屋建筑不受这些不确定的外力因素的影响作为设计的主要内容。而综合所有不确定的因素中,地震是最为常见的,因为一旦发生地震其由于没有活动规律其破坏力是极大的,所以在房屋建筑结构设计过程中应该充分的考虑到地震的破坏作用,要尽可能采取有效的抗震措施,通常房屋高层建筑的外形分为板式和塔式两大类:板式建筑平面两个方向的尺寸相差较大,塔式建筑平面两个方向的尺寸接近。对抗震有利的建筑平面形状是简单、规则、对称、长宽比不大的平面。

三、总结

近年来,随着我国高层建筑的发展,在其房屋建筑结构设计中会经常遇到一些问题,这就需要我们建筑结构设计人员通过自身经验进行自主创新,要不断通过正确的概念方法进行房屋建筑结构的优化设计。

【参考文献】:

[1]史曼柏.住宅建筑结构优化设计的探讨[J].科技创新导报,2009,(21):36-36.

结构优化方法第6篇

关键词:有限元分析 机械设计软件SolidWorks 实体建模 降低成本

Optimization design of hydraulic press structure based on CAE

Abstract:The involue hydraulic press is built in SolidWorks―3D mechanic design software,then analyzes stress of underbeam by the finite element software ANSYS,so obtain the contour of bending stress distribution of underbeam.According to the countor of stress distribution,improve the structure of hydraulic press,so it canprovide the dependable basic for optimization of design of hydraulic press

Keywords: Finite element;SolidWorks;Entity modeling;Lower the cost

引言

整体框架式液压机是利用液压传动技术进行压力加工的一种锻压机械设备,在国民经济的各行各业得到了日益广泛的应用。液压机机身结构组成链相对简单,其布局形式一般为三梁四柱式,有铸造和焊接两种结构方式。液压机主要功能是完成工件的压制成型,这一过程中机身结构要承受较大的载荷,因此,液压机整机结构布局要求符合整体力流最短原则和力流封闭原则。液压机结构主要以筋板为主,造型简单。整机及部件具有相似性,这种相似性是进行参数化设计分析的前提。就我国现在的生产状况而言,液压机结构设计采用的仍然是传统材料力学简化计算和经验设计相结合的方法。虽然这种设计方法在以前经过实践证明具有一定的可靠性,但存在着设计周期长,结构组建复杂等诸多的弊端,致使成本高,效益低,削弱了产品的竞争力。

本文利用了三维设计软件SolidWorks进行建模,再用ANSYS作第二次建模,然后通过ANSYS对液压机下梁进行网络划分,加载求解,得到最大处的弯曲应力。这样除了在资源的利用方面得到了节省,得出来的结果也达到一定的精度。

1.液压机的优化设计

1.1液压机建模

在我们的实际设计优化中,我们根据实际情况,建立了两个建模:一个是利用SolidWorks软件建立的CAD模型;另一个是利用ANSYS软件建立的CAE模型。原因是目前各个CAD/CAE软件彼此之间的模型通用性较差不能很好的实现无缝对接,在导入中经常会发生部分模型数据丢失的情况,所以,我们的研究方向是利用了SolidWorks软件进行建模,再用ANSYS作第二次建模,然后分析和优化,这样除了在资源的利用方面得到了节省,得出来的结果也达到一定的精度。

2.分析与优化

2.1优化前分析结果

使用ANSYS软件进行CAE模型建立,对THP61-500型整体框架式液压机下梁进行分析运算,然后将优化前的变形和应力云图从软件中保存出来(如图1.图2所示)。注:其中材料应力变形图为弹性材料模型所得到的应力变形结果。

从图中不难看出随着整体下梁结构上不同颜色的分布,液压机下梁各部位在受力的情况下发生的变形是不同的。其中出现红色的孔受力发生变形最大。变形最大值为0.1637mm。通常情况下,我们考虑极限值为下梁长度的1/5000。

从图中可以看出,应力主要集中在孔边缘,因为整体液压机在工作的时候,其承载了很大的压力,最大值为64.400MPa,在许可的范围内。其余部分应力分布都很均衡,受力后影响不大。

从上两图中可以看出,实际变形应力值与极限值还有很大的差距。在这种情况下,液压机在承受载荷时发生的变形很小,安全系数很高。用了很多没必要的材料,造成了人力和物力上的浪费,无形的增加了产品的成本。所以我们要利用有限元技术对此进行优化,通过合理分配油缸的受力,降低梁的高度,减小某些筋板的厚度,去掉一些没有用的筋板等一些方法,得到相比起来更优化的结果。达到既能让机器安全稳定的运行,又能减少材料,减轻液压机的重量,降低产品成本的目的。

2.2 优化分析

优化主要针对液压机下梁部分的左纵板位置,横前板,厚凸台厚,横后筋板厚,这几个变量来进行优化。将其变量取不同数值时,与变形和应力的关系用曲线图的形势表现出来。经过多次的分析验证,取下梁左纵板位置d3:0.25m,下梁横后筋板厚t4:0.02m,下梁厚凸台厚t11:0.06m,并且以这些数据作为参数进行优化结果的计算。

2.3 优化后的结果

将上节分析的优化结果程序在ANSYS软件中运行,得到THP61-500型整体框架式液压机下梁优化后的变形应力分布云图,如图3和图4所示。

从云图中可以看出,在进行了一系列的改进之后,对机器上的变形分布并没有大的影响。变形的最大值为0.387mm,其值在规定许可的范围之内,在节省材料和减轻重量的同时,不会影响液压机本身的正常安全使用,因此本设计达到了优化的目的,相对优化的比较成功。

从云图中我们可以看出,应力仍就集中在孔附近。最大应力为208.268MPa,在工程中的许可范围内,优化相对成功。

通过表1可以看出,经过一系列的减去前面横筋板,减小厚凸台厚,减小后横筋板厚度,移动左纵板位置的优化之后,虽然液压机的变形及应力有所增大,但是其变化值都在规定许可的变化范围之内,不影响液压机的正常使用。与此同时,液压机下梁的重量由原本的6.015吨减为3.838吨,比优化前减轻了2.177吨。所以本设计达到了优化的目的,相对优化的比较成功。

表1 优化前后对照表

变形(DMAX) (mm) 应力(SMAX)(MPa) 吨位(WT) (吨)

优化前 0.163 64.40 6.015

优化后 0.387 208.268 3.838

相对变化 +137.32% +223.39% -36.19%

3.结论

本课题对整体液压机下梁进行优化改进,在经过一系列的优化之后,使液压机在变形及应力都符合要求的前提下,减轻了液压机自身的重量,从而达到优化的目的。此设计相对于过去的设计方法,有诸多优点。第一,使用计算机制图,较传统的手工制图缩短了设计时间,提高了劳动效率。第二,使用CAE建模,使优化全过程更加精确并且便于修改,避免在图纸中修改所造成的不必要的时间浪费。第三,节省了液压机所用材料,使本液压机在激烈的市场竞争中占据了优势地位。因此,本设计在改善传统设计方法的同时,也较好的达到了优化的目的。

参 考 文 献:

[1] 王炳乐, 刘开, 刘龙泉. 四柱液压机上横梁静力有限元分析[J]. 机械. 2002 (4)

结构优化方法第7篇

关键词:轻量化;拓扑优化;尺寸优化;结构优化

中图分类号:U462.3 文献标志码:A 文章编号:2095-2945(2017)19-0087-02

引言

随着社会的快速发展,汽车保有量越来越多。汽车在带来方便快捷的同时,其油耗排放等问题也越来越引起大家的重视。汽车车身质量约占汽车总重的40%,空载情况下油耗约占整车油耗的70%[1]。其轻量化的目标在于尽可能降低汽车的整备质量,从而提高汽车的动力性,减少燃料消耗和排放,并且提高操稳性以及碰撞安全性。本文通过总结车身轻量化优化方法,介绍不同的优化步骤,并对车身轻量化优化设计进行展望。

1 汽车车身轻量化研究背景

汽车自1886年诞生至今有一百多年的历史,汽车车身的研究起步相对较晚,但是其作为汽车的重要组成部分,在整车结构中占据重要地位。研究表明,汽车车身质量每减轻1%,相应油耗降低0.7%[2]。

轻量化研究,是在满足安全性、耐撞性、抗震性以及舒适性的前提下,尽可能降低车身质量,以实现减重、降耗、环保、安全的综合目标[3]。轻量化的实现不仅满足了汽车的基本性能要求,且缓解了能源危机和环境污染的压力,也没有提高汽车设计制造成本,故汽车车身轻量化的研究引起了越来越多的关注。

2 轻量化结构优化方法

目前,以汽车车身轻量化为目标的优化设计方法主要包括拓扑优化、尺寸优化和结构优化。优化设计通常由目标函数、设计变量、约束条件三个因素组成。拓扑优化是在整体优化之前,设计空间确定后对材料布置格局进行优化,但是拓扑优化是从宏观出发,在某些细节方面可能并没有达到最优,因此在拓扑优化之后需要进行尺寸和形状优化。

2.1 拓扑优化

拓扑优化是在给定的空间范围内,通过不停地迭代,重新规划材料的分布和连接方式;是在工程师经验的基础上,明确目标区域和目标函数,确定变量以及约束条件,使车身结构最终既满足性能要求又减轻了质量[4]。拓扑优化通常将有限元分析和数学算法结合起来。

2.1.1 拓扑优化的数学模型

拓扑优化通常以车身质量为目标函数,结构参数和材料厚度为变量,模态和刚度为约束条件。其数学模型为:

minf(X)=f(x1,x2…xn);

s.t.g(X)>0;

ai

其中,x1,x2…xn为设计变量。

2.1.2 拓扑优化的基本步E和实例

在进行拓扑优化之前首先需要确定设计区域,设计变量和约束条件。然后通常进行有限元模态分析和灵敏度分析,使灵敏度小的部分不参与优化。在此基础上利用软件进行计算,因为在每次的计算中都有参数的改变,所以需要经过较多次的迭代,最终使其分布最优。在软件进行拓扑优化的过程中,用户对于每一次的迭代均可以实时监控。

目前拓扑优化中用到的数学优化算法包括优化准则法、移动渐近线法、数学规划法、遗传算法、进化算法等。使用较多的是优化准则法和移动渐近线法,优化准则法适于求解少约束问题,后者偏重于多约束问题[5][6]。

周定陆等[7]建立参数化模型,不仅将下车体质量减少了23kg,而且模态和刚度在原有的性能上略有上升。王登峰等[8]基于拓扑优化使大客车车身骨架质量减少约11%,且刚度强度等性能满足设计要求。

2.2 尺寸优化

尺寸优化是在结构参数、材料分布确定的前提下,对各桁架结构寻找梁最合适的横截面积、几何尺寸,使得车身质量最小且满足刚度等要求的优化方法。相对来说,尺寸优化建立数学模型较容易,计算简单,在实际工程中可以较快取得最优

解[9]。也可以说,尺寸优化是拓扑优化的进一步完善和发展。

2.2.1 尺寸优化的数学模型

尺寸优化以车身质量最小为目标,几何尺寸为设计变量,刚度以及各变量尺寸限制作为约束条件。

2.2.2 尺寸优化的基本步骤和实例

利用有限元分析划分单元,再进行灵敏度分析,排除不参与优化的单元。为了减少计算量,通常采用近似模型,然后对近似模型进行求解。刘开勇[10]利用超拉丁实验设计方法,采集车身的刚度和模态数据,在此基础上建立一阶响应面模型。潘锋[11]通过建立组合近似模型,减少优化过程的计算量,提高效率。

常用的近似模型有响应面模型、人工神经网络、径向基函数模型、kriging和支持向量回归模型等[10][12]。通过对一阶近似模型进行分析,计算不同的权系数并进行加权叠加构成的组合模型在满足模态和刚度要求的前提下,又兼顾了汽车碰撞安全性、NVH和疲劳等性能影响,且精度更高,因此组合近似模型在多目标多学科优化方面更胜一筹。

张伟[13]等采用遗传算法,结合拓扑优化和车身尺寸优化,不仅将质量降低35%,而且使刚度提高了80%以上。康元春等[14]采用DOE及极差分析和方差分析,确定车身骨架梁截面最优尺寸方案,使车身骨架质量减轻了123.5kg。

2.3 形状优化

形状优化是优化结构的几何形状,通常包括桁架结构梁节点位置的优化;结构内部孔的形状、尺寸的优化以及连续体边界尺寸的优化[15]。早期,与尺寸优化相比,形状优化模型建立比较困难,建立的模型质量通常比较差,影响后期模型的优化求解,尺寸优化的发展受到了限制。后来,网格变形技术的发展简化了形状优化模型的建立[16]。形状优化的过程与尺寸优化相似,通常也需要建立近似模型。

3 结束语

(1)拓扑优化计算量大,应用受到一定限制。尺寸、形状优化在多数软件中都有专门的模块,应用较多。为了解决计算困难问题,优化算法有待突破,算法的突破也是车身结构优化进一步发展的重要前提。

(2)有限元分析方法在车身结构优化中起重要作用,建模、分析软件在车身结构优化方面应用越来越多。

(3)本文所提优化方法没有充分考虑安全性、操稳性、NVH等因素,多学科多目标优化方法是目前车身结构优化的热点。

参考文献:

[1]黄磊.以轻量化为目标的汽车车身优化设计[D].武汉理工大学,2013.

[2]迟汉之.世界汽车轻量化及轻质材料应用趋势[J].轻型汽车技术,2001(4):54-56.

[3]韩宁,乔广明.汽车车身材料的轻量化[J].林业机械与木工设备,2010,38(1):50-52.

[4]崔建磊,曹学涛.拓扑优化技术在汽车设计中的应用[J].山东工业技术,2016(6):254.

[5]周克民,李俊峰,李霞.结构拓扑优化研究方法综述[J].力学进展,2005,35(1):69-76.

[6]葛文杰,黄杰,杨方.拓扑优化技术及其在汽车设计中的应用[J].机床与液压,2007,35(8):11-14.

[7]周定陆,高岩,蔡华国.基于车身结构拓扑优化的车身轻量化研究[C]//2010中国汽车工程学会年会论文集,2010.

[8]王登峰,毛爱华,牛妍妍,等.基于拓扑优化的纯电动大客车车身骨架轻量化多目标优化设计[J].中国公路学报,2017,30(2).

[9]王赢利.新能源汽车白车身结构拓扑及尺寸优化设计[D].大连理工大学,2012.

[10]刘开勇.基于响应面模型的白车身轻量化优化方法[D].湖南大学,2016.

[11]潘锋.组合近似模型方法研究及其在轿车车身轻量化设计的应用[D].上海交通大学,2011.

[12]韩鼎,郑建荣.工程优化设计中的近似模型技术[J].华东理工大学学报:自然科学版,2012,38(6):762-768.

[13]张伟,侯文彬,.基于拓扑优化的电动汽车白车身优化设计[J].湖南大学学报(自科版),2014(10):42-48.

[14]康元春,李@,高永正.基于DOE方法的客车车身骨架尺寸优化[J].重庆交通大学学报(自然科学版),2014,33(4):160-163.

结构优化方法第8篇

关键词:建筑设计;结构优化;实用性;整体效果

Abstract:The optimized design of the building structure is the important process of building the overall structure of the optimal. In a humane architecture and the use of conceptual design methods to improve the utility of the building structure and overall effect is explored on the basis of the basic procedures of the building structure design optimization method based on practical effect.

Keywords:architectural design;structural optimization;practicality;the overall effect

中图分类号:TU32/399

文献标识码:A

文章编号:1008-0422(2012)08-0089-02

1 引言

在进行建筑整体结构设计的过程中,为了使得建筑结构在空间、实用性、整体效果以及造价等方面达到最优,在完成基础设计之后都需要对建筑结构设计进行优化。尤其是在整体结构的造价控制方面,建筑结构设计优化是进行造价控制的主要途径。传统的建筑结构优化设计过程中一般都是以建筑的造价为根本进行控制的,而随着人们对建筑的实用性和整体效果要求不断增加,建筑的使用的方便性以及整体效果成为了人们关注的重点。而各种不同的设计方案对建筑材料的选用、建筑基础类型的选择、房屋进深的确定、建筑的层高以及总层数的确定等都是需要优化的问题和对象,因此在进行优化设计的过程中都应该予以重点考虑。

2 人性化建筑结构的特点及优化内容

建筑的人性化是体现建筑实用性的一个重要方面,尤其是随着社会经济的不断发展和进步,人们对于自身居住条件提出了更高的要求。在居住环境方面,不但要求有房可居,同时还要求住得方便、住得舒适。这时,以实用性为基础的“人性化”就成为了人们对建筑设计追求的一个重要概念。而在现代建筑结构设计优化的过程中,现代建筑设计就需要以“人性化”这个特点为基础,采用“以人为本”的设计理念,对建筑的整体结构进行优化。

人性化建筑结构的特点具有这样的几个特点:① 合理的空间布局,通常而言在人少地多的地方选择独立的小高层以及别墅,而在人多地少的地区则尽量建设高层,而且在建筑整体结构之内具有明确的用地分工,能够提高对土地空间的利用率;② 整体建筑结构极具艺术效果,通常在进行结构设计是在充分考虑通风以及采光等因素的基础上,一般尽可能的将客厅和卧室布置在建筑整体结构的南面,而将厨房、餐厅以及卫生间设置在建筑的北面。阳台直接与阳客厅相通,这样就使得穿过阳台时不需要穿过卧室,将私人空间和公共空间相分离,有效的保证了住宅类建筑使用过程中的私密性。

而通过采用建筑结构优化设计的方法,不但可以实现建筑的上述特点,还可以有效的降低建筑结构设计的成本。其中,在进行结构优化的过程中,主要的优化对象和优化内容包括:建筑基础结构的优化、建筑屋盖系统的优化、建筑围护结构的优化以及细部结构的优化等内容。

而针对上述结构具体方面的优化还包括具体的选型、结构的布置、结构整体受力分析以及结构造价分析等,在确保达到实用要求以及建筑标准的同时,通过与具体的工程实际情况相结合,达到优化设计的目的。

图1-建筑外部结构

图2-建筑内部结构布局

3 概念设计方法在提高建筑结构实用性及效果中的作用

建筑结构的概念设计一直是建筑整体结构优化的一个重要方向和重要基础。通过采用建筑结构的概念设计方法,可以保证建筑整体结构能在多种意料之外的外部作用力以及外部破坏的作用之下,将建筑的受破坏程度降到最低。所以,对建筑在使用的过程中可能会遇到的各种不稳定因素成为了建筑概念设计的重要内容,同时也成为了提高建筑实用性的一种建筑结构优化有效手段。在进行建筑可能遭受的结构破坏分析过程中,地震是一种作用力大、难以准确预测的破坏因素。因此,在进行建筑结构设计的过程中就应该预先针对建筑整体结构进行优化,从结构构造以及计算等多个方面对提高建筑结构抗震能力采取多种措施,而不利于建筑抗震能力提高的设计方案则尽可能的避免。通过对建筑结构的优化,应该确保建筑的整体刚度尽量均匀、对称,这是有效降低建筑整体结构在减小建筑结构在地震过程中出现破坏的一个重要手段。同时,在设计的过程中还应该采用多种有效的设计方式来增加建筑抵抗地震的能力,诸如延性设计,它可以有效的控制建筑在地震的作用下出现脆性破坏的问题;多道设防的设计思路可以使得在剧烈地震的作用下,建筑的一些次要结构先发送破坏,通过消耗一部分地震能量来减小对建筑主体结构的破坏。这些建筑结构优化方法都是建筑整体结构设计过程中需要遵循和采用的有效原则。

4 基于实用与效果的建筑结构设计优化方法的应用

4.1 提高建筑结构空间利用率的策略

空间利用率是衡量建筑人性化指标的一个重要指标,下面从提高提高住宅建筑的空间利用率出发,探讨提高建筑实用性的人性化建筑结构优化策略。

4.1.1基本思路

这里对于提高建筑结构空间利用率的策略是利用了整体和部分的关系,

N=1+1+1+1+1……

当N表示为整个建筑主体时,1就可以分别代表卧室、客厅、餐厅和卫生间等;

当N表示为120m2的建筑空间时,1则分别表示25m2的客厅、15m2的主卧室、5m2的卫生间以及9m2的餐厅等;同样,当N表示为对应卧室的大小时,1则表示卧室中的床铺、电视柜、挂衣柜以及桌子的大小;而当N表示为客厅时,1则表示电视的尺寸、沙发的大小、背景墙体的比例等。

4.1.2提高空间利用率的主要目的

增加对空间的利用程度,减少空间的浪费,在保证空间使用的实用性基础上增加空间利用的人性化。

4.1.3具体的实施策略

确定建筑空间的面积确保建筑的容积效率之后确定结构的最佳进深计算面宽确定房间的具体进深房间家具的尺寸以及实用性

目标空间结构合理的交通面积

增加面积

房间+客厅+起居室+运动室……

4.2 结构设计优化技术在建筑结构设计中的步骤

4.2.1结构优化模型的建立

建筑结构的整体优化方法包括这样三个基本的步骤:首先,确定设计变量。以影响建筑整体效果和实用性的相关参数作为设计变量,诸如对应的目标控制函数(整体结构造价C1、损失期望C2)、约束控制参数(整体建筑结构的可靠度SP)。在进行选取的过程中,尽量忽略那些对结构整体效果以及实用性影响不大的相关参数,这样可以大大减少模型的计算以及编程工作量;其次,建立目标函数,以建筑的整体效果和实用性最佳为目标,寻找一组既能够满足建筑使用功能又能够满足预设的结构截面尺寸、钢筋截面积等要素的参量,使得目标函数值最优;再次,定义约束条件,建筑结构的约束条件包括建筑的可靠度、强度约束、应力变形约束以及裂缝宽度约束等。设计的过程中就是要使得实际的结构设计在和约束条件相比较之后,符合当前的设计规范,达到最优的设计标准。

4.2.2优化设计方案的选择

建筑结构优化设计的方案很多,一般采用基于可靠度的优化设计方案。这些方案在计算的过程中需要考虑到多变量的复杂变化,同时约束条件较多,且都属于非线性问题,在进行设计计算的过程中一般要转化成为无约束以及线性问题来加以求解。这个过程中,可以采用的优化计算方法包括:拉普拉斯算子法、复合形法等。在进行算法的选取时可以对算法的精度以及算法的计算速率予以综合考虑,选定一个最适合的算法。

4.2.3 具体的程序设计

以上述选择和确定的优化设计方案为基础,编制一个功能齐全而运算速度较快的综合计算程序进行计算。程序设计的内容涉及到具体的工程指标选取以及建筑的功能需要,且编程内容较为繁复,这里不详细论述。

4.2.4结果分析

在对计算结果进行分析的过程中,应该从多个方面和多个角度予以考虑,诸如建筑结构的成本、实用性和整体空间效果等。这主要是因为建筑结构属于一项耗资较大的工程,涉及到的方面比较多,需要从全盘予以考虑,不能够仅仅为了节省资金、或者是仅仅为了增加建筑的实用性来进行优化。总的来讲就是要争取的处理好技术与经济之间的问题,在两者之间找到一个平衡点来进行优化。

5 结语

建筑结构的优化设计是一个复杂的过程,属于综合决策的问题。在优化的过程中需要综合考虑实用、安全、经济和整体效果等因素。本文对人性化建筑以及采用概念设计方法对建筑结构实用程度及整体效果进行改进的方式进行了探讨,并针对建筑部分结构的空间利用率的优化部分进行了具体分析,提供了一个建筑结构优化的新理念。

图3-某大底盘高层建筑结构设计

图4-某住宅内部空间布局

图5-建筑结构的有限元分析

参考文献:

[1] 张炳华.土建结构优化设计[M].上海:同济大学出版社,2008 :34-36.

[2] 侯贯泽,刘树堂,简国威.工程结构优化设计理论与方法[J].钢结构,2009(8):121-125.