首页 优秀范文 超声波污水处理的方法

超声波污水处理的方法赏析八篇

时间:2023-12-26 10:41:28

超声波污水处理的方法

超声波污水处理的方法第1篇

关键词:含油污泥 超声波技术 辽河油田

辽河油田每年产生含油污泥10-15万方,对含油污泥的处理已迫在眉睫。国内外在该领域常用的处理技术包括:溶剂萃取、焚烧、热化学洗涤、生物固化、或几种方法综合联用等, 这些方法存在一定程度局限性,因此油田污泥处理技术的相关研究对高效、节能、环保地处理油田污泥具有实践性的意义。

一、含油污泥主要特点

目前辽河油田含油污泥的来源主要有落地油泥、清罐油泥、浮渣底泥等,每天产生污水污泥超过1.2×105m3,其中最主要是稠油污水污泥。在2000年之前处理稠油污泥污水只有特油一号站,采用的工艺是气浮,现在即使采用减量处理,每年产生污泥量也非常巨大,无害处理工艺技术要求更加迫切。依目前的情况看,油田含油污泥的含油量在8%-35%之间,污泥中的主要成分是水,其比高达30%-80%,泥土和其他成分含量只占10%-50%之间。从含油污泥的化学成分看,包括老化的原油、沥青质、蜡质、胶体、盐类、细菌、气体等,还有在石油开采加工过程中添加的各种试剂,输油管道老化、腐蚀以后的污垢沉淀等成分。辽河油田由于建成时间较早,管道老化腐蚀造成的污垢成分较多,由于成分的复杂性,对辽河油田含油污泥的无害处理难度较高。辽河石油勘探局华油实业公司现有油泥处理厂年处理能力为5万吨,主要采用减量化综合处理工艺进行处理。

二、超声波技术处理含油污泥的原理

含油污泥无害处理的方法之一就是采用超声波技术脱油,其原理是应用超声波的振动和声控化。

首先,超声波的机械振动,超声波使得在其中的液体物质高速高频振动,形成极强的湍流。利用污泥中成分有液体污油、固体无机物质和水,这三种成分密度不同,在强大湍流作用下,三种物质之间会发生位移,并在界面处产生摩擦,于是油和泥就会发生分离。分离出来的石油小颗粒在振动作用下互相高速碰撞,可以克服污油小颗粒之间的界面张力,凝聚成较大的油滴。

其次,超声波的声空化,由于超声波振动后三相密度不同的物质会发生相对位移,位移速度不一致,就会在石油和污泥的界面处发生空化(产生气泡),这种空化可以达到分离石油和固体无机物的效果。气泡长大之后会在短时间内破灭,破灭瞬间会产生能流量较高的射流,超声造成的空化所射流速度可高达到400km/h,四面八方的气泡破灭产生的射流以固体不能抵挡的冲击力冲击固体表面,这样的冲击波会在不到4×10-8s的时间之内消失,产生的高温高压可将聚集的污泥分散,把石油和污泥剥离,此外,高温高压还可以降低固体无机物与污油之间的粘附力。辽河油田中的固体污垢和被污染的石油可以通过超声波的振动和声空化分离。

三、超声波处理含油污泥技术的研究

由于含油污泥来源有所不同,性质差异也比较大,比如,钻井时产生的污泥含有一些有害重金属,洗油井、修理油井过程中产生的污泥含有较多的腐蚀性物质,酸化污泥含有大量的强酸物质,原油油罐底部污泥中还有一定量的表面活性剂,通过超声技术的机械振动和声空化作用可以处理含油污泥。

王文祥在油田污泥的处理过程中采用了超声波技术,并研究了超声波的强度、超声时间、含油污泥的预热温度、清洗液使用剂量等试验条件对含油污泥的脱油效果的影响。

四、超声波处理含油污泥技术的应用

超声波具有低能耗、高效率、短时间、设备简单等优点,在工业、生物学、农业医学、化学、化工等领域已经被广泛应用。

新疆油田借鉴、结合国内外最新技术处理含油污泥,并开展了处理含油污泥的研究与应用。由于含油污泥成分复杂的特点,一般采用多种方法联用或综合使用,如热洗法、热解处理、萃取、热洗、助溶剂、回转炉等。

德国在采用超声处理含油污泥方面走在世界前列,他们主要利用超声分解剩余污泥,提高含油污泥的厌氧能力。

德国汉堡工业大学奈斯研究团队深入研究输入能量语产出的比例问题,经过超声处理含油污泥,被击毁的好氧细胞比例为5%左右时综合效果最佳。

石油、天然气在开发过程中会产生很多含油污泥,为了避免含油污泥对油田的正常运营产生影响和减少对污染的环境,中原油田的相关技术研究员充分考虑自身特点,对污泥的特性、产生原因、污泥浓缩、污泥脱水等展开了大量试验。结果表明:对含油污泥的处理技术进行研究后,在中原油田的各个污水处理站进行推广应用,均取得较好的处理效果,主要表现在污泥处理各个过程稳定运行,解决排污问题良好,处理之后水质达标且达标效果稳定,成功杜绝污泥外排之后引起污染,保护油区自身环境非常有效。

目前,我国油田在含油污泥的处理过程中大多数只采用单独的物理处理、化学处理、微生物处理等技术,而随着各种单项处理技术的发展与不断完善, 最近几年出现了联合、综合处理调理技术,而且得到了广泛的推广和大量应用。

结语:我国在石油的开采加工过程中产生大量含油污泥,一方面对有限的石油资源本身是一种浪费,污泥的不正确排放也会对环境造成极大的破坏。由于含油污泥的性质较为复杂,成为了石油开采加工中较为麻烦的问题,因此急需对含油污泥做出高效、节能的处理。超声波技术处理含油污泥,一方面可以回收超声后集聚的石油,另一方面可以减少其对环境的污染,而且超声技术本身与其他处理技术相比优势较为显著。

参考文献:

超声波污水处理的方法第2篇

关键词:污泥;处理处置技术;研究进展

前言

当前在污水处理技术中,活性污泥法是应用最为广泛的技术,其对脱氮除磷具有非常好的效果,同时在应用活性污泥法时的污泥产生量非常大,在工艺路线中,一部分污泥回流到曝气池参与生物反应,而剩余的污泥或龄期较长的污泥则需要从污水处理构筑物中排除,这些剩余污泥必须要经过适当的处理处置,使之无害化、减量化、资源化和稳定化,便于进一步的处置。一般来讲污泥处理处置投资和运行的成本非常大,最高可占到整个污水处理厂的投资和运行费用的50%以上,因此在可以达到污泥处理处置目的的同时,如何降低其投资和运行成本成为当前污水处理领域讨论的热点问题。

1 传统的污泥处理处置技术

1.1 传统污泥处理技术

1.1.1 好氧、厌氧消化技术

好氧、厌氧消化就是利用好氧微生物和厌氧微生物对污泥中的有机成分进行氧化分解的过程,经过好氧消化处理的污泥性质非常稳定,效果较好,但是缺点是好氧消化工艺的运行成本和维护费用较高,因此在我国污水处理厂中应用空间已经越来越小。污泥经过厌氧消化后性质也较为稳定,而且可以将处理后的污泥以能源的方式进行部分回收利用,因此是资源化的重要体现,然而厌氧消化后的污泥含水率较高,需要进行进一步脱水,因此还需额外投资脱水设备。

1.1.2 湿式氧化法

湿式氧化法是采用物理化学的方法,是将剩余污泥置于高压反应容器中,向容器内通入高压空气,使反应器压力达到1-20MPa,以空气中的氧气作为氧化剂,然后在300℃左右的高温下进行的氧化反应,可将液相的有机物质充分氧化分解为二氧化碳、水或小分子有机物,氧化反应较为完全,可用于高低浓度的污泥处理,处理效果十分显著,但由于高温高压反应对设备的要求较高,因此就增加了投资、运行和维护的费用,一般只用于投资规模较大的污水处理厂污泥处理。

1.2 传统污泥处置方法

常用的污泥处置方法有卫生填埋、焚烧、海洋倾倒、土地利用等。

1.2.1 卫生填埋

卫生填埋可以使处理后的污泥与地面环境有效隔离,并且处置成本较低,但是污泥的滤液可能会渗入地下水层,造成地下水的污染。

1.2.2 焚烧处置

焚烧的过程可将污泥转化为无机物,体积大为减小,同时可有效杀灭污泥中的细菌,但是在焚烧的过程中会产生二氧化硫、二恶英等气体,对空气造成严重的污染,随着国家对空气环境质量重视程度越来越高,使得焚烧处置污泥的方法会逐渐被淘汰。

1.2.3 海洋倾倒

海洋倾倒就是将处理后的污泥直接作为垃圾倾倒入海洋中,因此处置方式比较简单,处置费用较低,但海洋的自净能力毕竟有限,随着污泥数量的急剧增加,使得海洋倾倒会对海洋的生态环境造成越来越严重的影响,因此这种处置方法已经不被提倡。

1.2.4 土地利用

经过适当的处理后,污泥中会含有大量的营养成分可微量元素,可用于农业、林业用地土壤的肥料,从而实现费用利用,然而由于污泥中还可能同时存在重金属、放射性元素、多氯芳烃等等难于降解的有害物质,如果进入土壤中就有可能造成对土壤的污染,进而对农作物、林木造成污染,因此在将污泥土地利用处置之前一定要保证其无害化。

2 新型的污泥处理处置技术

2.1 超声波处理技术

超声波在水中产生的效应非常复杂,在一些清洗的领域已经普遍用超声波技术收到了良好的效果,而实践证明在污泥处理中应用超声波技术可取得较好的效果,其作用原理是:中低频的超声波在污泥的水相中可产生强力脉冲,从而制造局部的高温和高压条件,并同时产生超高速射流,在这样的极限条件下污泥中的丝状菌等微生物以及有机物的结构被破坏,防止污泥膨胀的发生,使污泥的脱水性大幅提高,经过脱水处理后使污泥达到稳定化、减量化和无害化的目的。在用超声波技术处理污泥时,可根据实际情况调整超声波的声能密度以及超声时间,不断优化处理条件,从而达到最佳处理效果。由于超声波污泥处理技术的能耗较大,且声能量利用效率不高,因此在一定程度上阻碍了其进一步应用,然而由于超声波对污泥的处理效果显著,使其仍然具有较好的应用前景,当前一般用超声波与其他处理技术联合使用,可降低运行成本,并保证污泥的处理效果。

2.2 原位减量技术

如前文所述,在活性污泥水处理过程中产生大量的污泥,在对这些污泥进行处理处置的过程中会耗费大量的物力财力,因此如果能够降低污泥的产量,使其在污泥水处理工艺的过程中就对污泥进行减量化处理处置,就会大大降低后续处理处置的费用。目前最为常用的污泥原位减量技术是利用微生物对污泥进行捕食和消化,使水处理反应器内的食物链增长,从而使污水环境内可用于合成生物体的能量大为减少,从而达到降低污泥产量的目的,可利用的微生物有纤毛虫、鞭毛虫、变形虫等原生微生物和线虫、轮虫等后生微生物,实践证明在原活性污泥水处理工艺中引入各种微生物后,活性污泥的产量仅是之前产量的30%左右,而且整个过程不需要另外投入处理处置设施,且免维护,投资和运行成本相当低,不影响水处理效果。

3 结束语

综上所述,污泥处理处置技术正处在不断发展的过程中,对于污泥的处理与处置,不外乎两种方式,一是对系统产生的污泥进行末端处理,使其达到减量化、无害化、稳定化和资源化等目的,二是在污水处理的原位进行减量的方法,使污泥在源头上进行处理,减少污泥排放量,因此,将这两种污泥处理处置的方式联合使用,首先使污泥产生量减少,剩余的少量污泥可进行末端处理,可取得较好的效果,应当是未来污泥处理处置技术发展的一个方向。

参考文献

[1]林亚楠.污泥处理处置技术的现状及发展趋势[J].科技创新与应用,2013.

[2]张韵.我国污泥处理处置的规划研究[J].给水排水动态,2010.

[3]杨晓奕,蒋展鹏.湿式氧化处理剩余污泥的研究[J].给水排水,2003.

超声波污水处理的方法第3篇

关键词:制药行业;污水处理;技术

前言:制药行业之中,药厂的污水排放具有水量大,废水处理工艺复杂,废水当中具有高浓度的污染物的特点。其排放的污水之中含有大量的有毒有害物质,如细菌与病毒等,污水中有较多的生物抑制因子,而且还含有一些难以降解的有机物,列入难治理的废水的榜单。对于排除的废水,若不能够及时的进行处理,而是任其排入环境水系中,不可避免地会污染饮用水源、传播相关的疾病、危害到人们的生命与健康。

1 制药厂的传统的废水处理技术

1.1浮选法

浮选法也叫做气浮法,在实际应用中,又分为散气气浮法、电解气浮法和溶气气浮法三种形式,这种方法的原理是通过一定的手段使水中产生大量微气泡,使废水当中具有相似浓度的污染物粘在一起,然后浮出水面上,这样就把废水中的固液和液体进行了有效的分离,通过这样的手段来去除污染物。

1.2混凝沉淀法

混凝沉淀法是主要的物化法的一种。混凝沉淀法是利用该种方法有效的降解废水中的微生物,从而减少废水之中污染物含量,但是利用这种方法会产生大量的化学污泥,再次生成污染物,但是通过这种方式,废水之中的盐量、氨、氮等含量的去除率却较高[1]。

1.3膜分离法

膜分离法是通过利用膜来将溶剂分离。而且利用膜分离法用多酚类来制约废水,从而回收乙醇的效果尤其明显。在这过程中,又能够有效的截留一些多酚类混合物。

1.4厌氧生物处理方法

厌氧生物处理方法适宜对高浓度有机制药废水进行处理。但在废水的处理过程中,如果单独的只使用此种方法,在后续处理中,还要做好对好氧生物的再处理,这样才能达到良好的处理效果。厌氧生物处理法分为厌氧折流板反应器法、水解升流式污泥床法以及上流式厌氧污泥床法。

1.5好氧生物处理技术

好氧生物处理技术大致可分为三种形式,分别为普通活性污泥法、序批式间歇活性污泥法以及深井曝气法。

在目前,在制药厂的污水处理中应用的较为普通遍的是普通活性污泥法。也因为此种方法也较为成熟,但在应用此种方法时,需要对要处理的废水进行大量的稀释.这导致了废水中出现大量的泡沫。这种泡沫造成了污泥的膨胀率提高,直接的影响了污水处理的效果。

通常我们会选择序批式间歇活性污泥法来对间歇性排放以及水量与水质波动较大的制药厂废水进行处理,因为这种方法结构简单、具有很好的经济性可以将水质均化以及不会产生污泥回流的情况。在许多制药废水的处理中都得以应用。但此种方法会产生污泥沉降,需要利用很长的时间对泥水进行分离[2]。

深并曝气法具有以下优点,如氧利用率高、深井中溶解氧的效果好,充氧能力强:污泥负荷速率高;占地面积小、运转费用低、投资少、效率高、保温效果好,缺点是部分深井出现渗漏现象,深井施工难度较大,基建费用较高。

1.6电解法

电解法是电解质溶液在电流作用下发生了电化学反应。和其他的方法相比,电解法的优点是效率高、操作简便,并且还具有良好的脱色效果。

1.7 Fe―C处理法

Fe―C法也称为铁碳微电解技术。是用铁屑、碳构成原电池,经过氧化还原、絮凝吸附、络合和电沉积作用而形成的水处理方法。该技术不只可以去除一些难以降解物质,还能够改变部分有机物的结构,从而提升废水的可生化性。对制药废水中的磷的含量也有良好的去除作用。

2 制药厂废水新型处理方法

近几年来,科研人员一直在不断的进行一些新型的制药废水处理办法的研究,最新研制成果有微波处理法与超声波处理法。

2.1微波处理法

微波作为一种特殊的电磁波,单独利用此项方法来处理废水效果并不十分理想,但如果将微波处理法与其他常见处理工艺相结合却会出现强化处理的效果。如活性炭吸附法就是处理制药废水的常用方法。但是活性炭在吸附之后,表面的有机物质却很难进行处理,用微波处理法就可以有效地解除吸附在活性炭表面的附着物,使活性炭吸附能力再生,并且重复利用。

2.2超声波处理法

使用频率大于20000Hz以上的超声波辐射溶液可以引发诸多的化学反应,形成“超声空化效应”[3]。超声波水处理技术的核心是超声波通过气泡内燃烧分解和超临界水体氧化等方式进行废水的处理工作。近几年来,伴随着微波化学理论的不断成熟,越来越多的人们关注如何将微波以及超声波技术应用于水处理领域,尤其是超声波和生物接触氧化法的工艺组合,使高浓度有机废水的净化工作更加方便。

3 对未来的废水处理的技术的展望

因制药厂产生的废水不仅具有很高的浓度,而且在废水中还含大量的不易与不可降解的污染物,所以一直以来制药企业在进行废水治理工作上都存在着较大的困难。而且为使污水排放的处理标准可以达到国家所要求的程度,制药企业一直承担着较大的压力。加强废水的治理工作已经成为当前我国十分紧迫的任务之一。制药的废水因其组成成分复杂以及特有的水质特点,在治理中如果单纯的依靠单一治理技术很难达到国家给出的排放标准。所以在今后的实际治理工作中,我们还需要根据废水特有的水质情况来选择恰当的工艺联合技术进行治理;于此同时,在治理的中,我们应尽最可能的确保资源的有效利于以及循环利用。即使近年来我国的制药企业一直不断的加大对废水处理的整治力度,但在依然没有十分成熟的治理技术,而且现如今出水效果的稳定性差以及资源利用率低等问题依然十分严重。所以我国的制药企业在废水处理上还需要不断的改进技术,加快研制进程,尽快的开发出新型的、高效的制药废水处理技术。

结语:国家与制药行业的管理政策一直在强调要加强制药企业污染防治,国家对于水污染治理的战略对废水处理的要求也是越来越高。面对日趋严格的排放标准,开展制药行业废水治理的预处理与加快集成技术工艺的研制变得越来越重要。因此运用预处理技术来提高难降解废水的可再生与实现资源的循环利用称为了当前制药企业废水治理的发展方向与目标。所以制药企业仍需不断的努力研制新型的废水处理技术,降低成本,提高治理的成效。

参考文献:

[1]李朝晖.制药行业污水处理生物增效研究[J].海峡科学,2012.09,(06):96.

超声波污水处理的方法第4篇

论文摘要:介绍了超声降解水体中有机污染物的降解机理。从超声的系统因素包括频率和声强;化学因素包括溶解气体、pH值、反应温度等的多个方面介绍了影响降解效率的因素。  

超声波是一种高频机械波,具有波长较短,能量集中的特点,它的应用主要是按照能量大,沿直线传播这两个特点展开的。20世纪90年代初,国外等一些学者开始研究超声降解水中有机污染物。超声波技术具有简便、高效、无污染或少污染的特点,是近年来发展的一项新型水处理技术。它集高级氧化、热解、超临界氧化等技术于一体,且降解速度快、能将水体中有害有机物转变成CO2 、H2O、无机离子或比原有机物毒性小易降解的有机物,因而在处理难生物降解有机污染物方面具有显着的优越性。  

1. 基本理论和机理  

在空化效应作用下,有机物的降解过程可以通过高温分解或自由基反应两种历程进行。  

1.1 空化理论  

超声波在介质中的传播过程中存在着一个正负压强的交变周期。在正压相位时,超声波对介质分子挤压,增大了液体介质原来的密度;而在负压相位时,介质的密度则减小。当用足够大振幅的超声波作用于液体介质时,在负压区内介质分子间的平均距离会超过使液体介质保持不变的临界分子距离,液体介质就会发生断裂,形成微泡,微泡进一步长大成为空化气泡。在紧接着的压缩过程中,这些空化气泡被压缩,其体积缩小,有的甚至完全消失。当脱出共振相位时,空化气泡就不再稳定了,这时空化气泡内的压强已不能支撑其自身的大小,即开始溃陷或消失,这一过程称为空化作用,或孔蚀作用。  

由于空化作用所引起的反应条件的变化,导致了化学反应的热力学变化,使化学反应的速度和产率得以提高。  

1.2 自由基理论  

在超声空化产生的局部高温、高压环境下,水被分解产生H和OH自由基:  

H2O →HO•+ H•  

H•+ H•→H2  

HO• + HO•→H2O2  

H•+HO•→H2O  

另外溶解在溶液中的空气(N2和O2)也可以发生自由基裂解反应产生N和O自由基:  

N2→2N•  

N•+HO•→NO+ H•  

NO + HO•→HNO3  

   影响超声降解的主要因素  

影响超声降解的主要因素包括溶解气体、pH值、反应温度、超声功率强度和超声波频率等。  1 溶解气体  

溶解气体的存在可提供空化核、稳定空化效果、降低空化阈,对超声降解速率和降解程度的影响主要有两个方面的原因:(1)溶解气体对空化气泡的性质和空化强度有重要的影响;(2) 溶解气体如N2O2产生的自由基也参与降解反应过程,因此,影响反应机理和降解反应的热力学和动力学行为。  2 pH值  

对于有机酸碱性物质的超声降解,溶液pH值具有较大影响。当溶液pH值较小时,有机物质在水溶液中以分子形式存在为主,容易接近空化泡的气液界面,并可以蒸发进入空化泡内,在空化泡内直接热解;同时又可以在空化泡的气液界面上和本体溶液中同空化产生的自由基发生氧化反应,降解效率高。当溶液pH值较大时,有机物质发生电离以离子形式存在于溶液中,不能蒸发进入空化泡内,只能在空化泡的气液界面上和本体溶液中同自由基发生氧化反应,降解效率较低超声降解发生在空化核内或空化气泡的气-液界面处,离子不易接近气-液界面,很难进入空化泡内,因此,溶液的pH值调节应尽量有利于有机物以中性分子的形态存在并易于挥发进入气泡核内部。 3 温度  

温度对超声空化的强度和动力学过程具有非常重要的影响,从而造成超声降解的速率和程度的变化。不同温度下,实验表明温度提高有利于加快反应速度,但超声诱导降解主要是由于空化效应而引起的反应,温度过高时,在声波负压半周期内会使水沸腾而减小空化产生的高压,同时空化泡会立即充满水汽而降低空化产生的高温,因而降低降解效率。一般声化学效率随温度的升高呈指数下降,因此,低温(小于20℃)较为有利于超声降解实验,一般都在室温下进行。多数研究也表明,溶液温度低对超声降解有利。  4 超声波频率  

研究表明,并非频率越高降解效果越好。超声频率与有机污染物的降解机理有关,以自由基为主的降解反应存在一个最佳频率;以热解为主的降解反应,当超声声强大于空化阈值时,随着频率的增大,声解效率增大。

2.5 超声功率强度  

超声功率强度是指单位声发射端面积在单位时间内辐射至反应系统中的总声能,一般以单位辐照面积上的功率来衡量。一般来说,超声功率强度越大越有利于降解反应,但过大时又会使空化气泡产生屏蔽,可利用超声功率强度能量减少,降解速度下降。  

   结语  

超声处理是一个极其复杂的过程。不同物化性质的有机污染物,因降解机理不同,超声降解的效果也存在差异。利用超声空化技术,只有针对具体的有机污染物,优化反应操作条件才能获得最佳的超声降解效果。今后有关超声空化技术的研究方向是,针对实际多组分难降解物系在降解机理、物质平衡、反应动力学、反应器设计放大等方面进行深入的研究,使其最终成为一种适用、高效和低成本的水处理技术。  

参考文献  

[1] 李占双,闫冰,李凯峰. 超声降解水体中有机污染物的研究现状[J].应用科技,2003,30(6):45-47.  

 沈壮志,程建政,吴胜举. 五氯苯酚降解的超声诱导[J]. 化学学报,2003,61(12):2016-2019.  

 赵彬斌,王丽. 超声波技术对水中有机污染物的降解[J]. 化学工程师,2002,93(6):21-22.  

 肖小明, 李洪青, 邹华生.超声波降解有机污染物的研究与发展[J].环境科学与技术,2003,26:84-86.  

 李春喜, 王京刚, 王子镐, 等. 超声波技术在污水处理中的应用与研究进展[J]. 环境污染治理技术与设备,2001,2(2):64-69.  

 方婷, 李沪萍, 罗康碧, 等. 声化学技术处理有机废水的研究进展[J]. 化工科技,2006,14(5):40-45.  

 马军, 赵雷. 超声波降解水中有机物的影响因素[J]. 黑龙江大学自然科学学报, 2005,22(2):141-150.  

 王西奎, 国伟林, 姚忠燕, 等. 超声化学法降解水中微量亚甲基蓝的研究[J]. 环境化学,2004,23(1):105-108.  

 王金刚,郭培全,王西奎,等.空化效应在有机废水处理中的应用研究[J].化学进展,2005,17(3):549—553.  

[10] 华彬, 陆永生, 唐春燕, 等. 含氯苯废水的超声降解研究[J]. 环境污染与防治,2001,23(3):45-47.  

[11] 张颖, 林书玉, 房喻. 声化学新发展—纳米材料的超声制备[J]. 物力,2002,31(2):45-47.  

[12] 陈伟, 范瑾初. 超声降解水体中有机污染物的效果及影响因素[J]. 给水排水,2000,26(5):19-21.  

[13] 李占双, 闫冰, 付澈. 超声/H2O2工艺降解水溶液中甲醛的实验研究[J]. 应用科技, 2004,31(9):59-61.  

超声波污水处理的方法第5篇

【摘要】:目的 超声机加酶清洗医疗器械可提高清洗效果。方法根据超声机的工作原理和酶的特性来具体阐述清洗方法、清洗过程、清洗效果。 结论 超声机加酶清洗污染严重的医疗器械效果显著,对保证消毒灭菌成功和控制交叉感染具有重要的意义。

【关键词】:酶洗剂,超声波,清洗器

高质量的清洗效果越来越被重视,因为清洗是灭菌成功的前提,没有高质量的清洗,就不会有合格的灭菌。我院供应室使用全效多酶洗液和超声波清洗器多年。超生清洗机加酶洗液对污染严重的医疗器械清洗效果显著。

1. 清洗方法

本医院使用全效型多酶清洗剂和超声清洗单槽清洗机,对被污染的医疗器械进行清洗,处理的主要对象是日常使用的诊疗手术器械、带针芯的内套针、导管等。

方法:将自来水加入超生清洗机内到一定数量(根据器械的多少而定,为全部浸没器械),再根据水的毫升数将酶洗液按污染程度的比例(参考酶洗液的说明书)加入到超生清洗机内。水温设定在25-35℃,先进行浸泡在进行超声清洗。具体程序为:器械回收分类后,打开每个器械的轴节,穿刺针的内套应取出。将所有器械没入液面以下与酶洗液充分接触,一般污染器械浸泡2-5分钟,严重污染器械浸泡10分钟,污物变干浸泡20分钟。浸泡完毕后进入超声清洗环节3-5分钟的超声清洗,然后用流动自来水清洗,热水冲洗,纯化水冲洗,其中导管金属管腔、内套针均用高压水枪冲洗,高压气枪吹干,再上油,烘干。

1. 效果观察方法

超声清洗机内加酶洗液清洗后的医疗器械肉眼观察洁净度:器械表面不挂水珠,且关节处无斑点及颗粒,表示清洁合格。观察结果与手工刷洗相比,器械亮度与光洁度明显优于手工刷洗,尤其是对污染严重的器械更加显著。

1.经验及体会 多酶清洗液可有效高速地分解人体的各种有机分泌物,利用酶的稳定性可除去和防止污物的再聚集[1]。酶洗液中含有蛋白酶、脂肪酶、纤维酶、淀粉酶等,还含有酶蛋白稳定剂、防腐剂、漂洁剂等。在常温下其催化效率比一般催化剂高,但易受酸碱影响[2]。酶清洗剂清洗时的水温为30-40℃,这时酶的活性最强。温度过高反而使酶的活性下降甚至丧失。使用超声波清洗加酶洗液,一般污染器械清洗2-5分钟即可,若污染严重可适当延长时间。超声波清洗机工作过程中,水温会缓慢升高,所以温度设定不能超过35℃。再者酶洗液本身有漂洁功能,也就是有机物及清洁剂本身的物质成分容易脱落,同时不会再附着回器械的效能[3]。因此在使用时,器械上附着的酶剂易于漂洁,对于超声机本身也容易清洗。酶洗液应现配现用,配后一次性使用应<8h,因为酶洗液使用时间过长超声机内有污染积淀,会造成酶的活性降低,如再次使用既达不到清洗的目的也会造成污染。

酶清洗剂通过超声波发生器在水中激发出冲击、震荡和微小气泡的力量,来吸引和剥离附着在器械上的污染物质,可以提高酶的活性。超声波的冲击震荡能触及到人工作不能触及的盲管部和微细的构建部,从而提高清洗效果。尤其对于金属管腔、凹槽、纹路等手工不易清洗到的器械部位效果更好。但是由于超声波冲击、震荡作用较强,如长期使用,锋利刃口器械应加以保护,精密仪器可单用酶浸泡或定期进行超声机加酶清洗,另外对于干结已久的器械最好是先在酶洗液中浸泡,一般浸泡20分钟后先人工刷洗再进入超声机加酶清洗。洗后的器械必须先用自来水反复冲洗,在用纯化水充分冲洗干净,彻底冲除酶或自来水中的残留液及有害物质。

超声机内加酶清洗医疗器械的目的是提高清洗效果,若医疗器械长期清洗不净,就会形成生物膜,造成灭菌不彻底导致感染。另外,超声机内加酶洗液在清洗过程中势必会有各种各样的血液、体液、分泌液等物质进入,此时机内的污染程度最重。再者酶洗液是一种清洗剂而不是消毒剂,因此清洗时做好个人防护十分重要,要戴手套、护目镜、口罩,穿防护衣等。超声机工作是要盖上盖子,防止机内污染的酶洗液溅出。

总之,医疗器械彻底的清洗和有效的消毒灭菌同样重要。超声机内加酶清洗是利用双重清洗作用清除器械上的污垢,将清洗步骤合二为一,既省时省力,且清洗效果好。是目前较理想的清洗方法。

参考文献

[1] 张继玲.超生清洗机洗涤处理及分析[J].中华医院感染学杂志,2003;13(9):847.

超声波污水处理的方法第6篇

关键词:超声波清洗机;临床消毒;装备创新

随着现代医学发展、医学模式的改变,我院从原来使用的全自动清洗消毒机大部分改为超声波清洗机洗涤医疗器械,超声波清洗机清洗齿类器械效果最佳[1]。超声波清洗机是利用超声波发生器所发出的高频振荡讯号,通过换能器转化成高频机械振荡而传播到介质-清洗溶液中,超声波在清洗液中疏密相间的向前辐射,使液体流动而产生数以万计的微小气泡,这些气泡在超声波纵向长波成的负压区形成、生长而在正压区迅速闭合,在这种称之为"空化"效应的过程中气泡闭合可形成超过1000个气压的瞬间高压,连续不断产生的高压就像一连串小"爆炸"不断地冲击物体表面,使物体表面及缝隙中的污垢迅速剥落,从而达到物件表面净化的目的,现手术方式的多样化和手术量的增加,我院启动了手术室-消毒供应中心一体化的管理模式。消毒供应中心承担了全院包括手术室(含外来器械)、口腔科、介入室、妇产科等科室在内的所有再生医疗器械的回收清洗消毒灭菌工作。

1 消毒装备创新意义

我院年手术量约15000台,消毒供应中心对回收的常规器械清洗按标准流程对器械预处理,即:冲洗洗涤(含超声波清洗)漂洗终末漂洗,再进入全自动清洗机清洗[2]。医用超声波清洗机是一种无污染的设备,整个过程是一种纯物理清洗过程,安全可靠,不产生电磁波及辐射,对人体无害。而且清洗液直接对医疗机械进行清洗,消毒和杀菌,无须人手接触清洗液,消除二次污染。对医护人员也可以有效隔离细菌病毒,保护医护人员的安全卫生。现我院已从原来使用的全自动清洗消毒机大部分改为超声波清洗机洗涤医疗器械,护士将每个手术包分装在1~3个清洗篮筐中,而每筐器械的重量约1~3 kg,每天大约有200筐器械进行超声清洗,护士将器械搬入、搬出超声波清洗机,工作繁重。该研究成功将能减轻护士的大量体力,为了帮助护士的清洗工作变得更加轻松、合理,而且能减少包装时的差错,积极探索超声波清洗机的技术改进,减少护士的消耗大量体力,提高工作效率。

2 消毒装备清洗方法

2.1超声波清洗 参照安装说明书连接清洗机的电控柜与主机间的温控传感器信号线、超声驱动线、加热器控制线等线路,并接通380VAC电源,安装清洗机的上水管、放水管与溢流排放管。

2.2超声波清洗池清水 向清洗池内加入适量清水,液面高度以浸没将要清洗的零部件为准,一般不超过清洗池的3/4。

2.3超声波清洗加温 启动电控加热开关,将水温调节旋钮上的白色刻度线指向适当的温度(应为60℃左右)。清洗机在使用过程中,清洗剂的最高温度不应超过70℃。

2.4超声波清洗机加入清洗剂 待水温升至40℃左右时,将UC-O3零部件清洗剂加入清洗池中(一般一次5 kg左右),徐徐搅动清水使其充分溶解(此时亦可启动越声波或开启鼓气装置进行搅拌)。多酶清洗医疗器械,清洗效果好,质量保证,是理想的清洗方法 ,值得推广使用[3]。

2.5超声波清洗机预处理 清洗之前宜用竹刀先将零部件表面的污垢(如防尘罩任其外表面会有很多尘土、气缸体类的零件在其外壳曲线变化处会积留很多厚且易除的油泥)简单清洁一下,以便延长清洗液使用寿命。超声波能够进行精密清洗,但其对泥类的污物处理能力较弱,故预处理中,应尽量将黄泥或稀泥类的污物去除。清洗时宜重点注意器械关节处不易被清洗到的部位[4]。

2.6超声波清洗机零件摆放 在超声波清洗机中加入弹簧装置,它能随着器械的重量自动升降;弹簧装置上方安装一个比器械篮筐稍大的网盖,它能将器械篮筐盖住,防止小器械、轻器械从篮筐中飘入超声波清洗机,防止器械飘入清洗槽中,减少差错的发生。

3 临床清洗消毒效果分析

将回收的污染器械分为两组 对超声波清洗机中加入弹簧清洗器组作为观察组与普通超声波清洗器组作对照组。观察组与对照组医疗手术器械进行清洗质量及效率进行对比。每组手术器械又分为三类院光滑类器械、齿类器医用超声波清洗机是以水基或其他溶剂作为超声波清洗介质,清洗工艺简 单,快捷高效。加入弹簧超声波清洗对不规则表面、多孔、狭缝、细孔、沟槽之类物品的清洗特别有效,而且在相同时间,清洗物品相同条件下,进行洗涤效果数量对比。见表1。

4 结果

观察组清洗的质量及数量明显高于对照组。在有效的时间内发挥其最大效能,保证各类物品的清洗质量,既能减轻护士的工作强度,弹簧装置上方安装一个比器械篮筐稍大的网盖,它能将器械篮筐盖住,防止小器械、轻器械从篮筐中飘入超声波清洗机,防止器械飘入清洗槽中,也能减少护士工作中差错的发生;它最终的研究成果必将产生良好的社会效益和经济效益,值得临床推广应用。

参考文献:

[1]纪馥芳, 李爱君, 郭燕芳. 全自动清洗消毒器与超声波清洗机洗涤医疗器械效果比较[J]. 中国基层医药, 2006, 13(7):1166-1167.

[2]刘英秀. 医疗器械3种清洗效果的对比研究[J]. 河北医科大学学报, 2012, 33(2):231-233.

超声波污水处理的方法第7篇

关键词:富营养化 洗涤剂 超声波

水资源是人类赖以生存的基本物质,随着人口增长和社会经济飞速发展,水的需要量急剧增加,而水资源污染也日益严重。我国自20世纪80年代以来,由于经济的急速发展和环境保护的相对滞后,许多湖泊、水库已进入富营养化,甚至严重富营养化状态,如滇池、太湖、西湖、东湖、南湖、玄武湖、渤海湾、莱州湾、九龙江、黄浦江等。2000年对我国18个主要湖泊的调查表明,其中14个已进入富营养化状态[1]。

2 水体富营养化的危害

水华的出现使水味变得腥臭难闻,降低水体的透明度,增加浊度。水面被藻类遮盖,阳光难以进入,严重抑制了深层水体的光合作用,降低溶解氧。死亡藻类不断沉到底部,加快了底部氧的消耗,使表面以下的水体处于厌氧状态,造成好氧生物死亡。除散发臭味、破坏景观、破坏水生生态环境外,部分藻类还能分泌藻毒素,引起鸟类、牛、羊等动物中毒,可能有致突变作用,对人类也有很大的潜在危险 [2]。富营养化对水体生态和人们生活造成很大影响,对于那些依靠富营养化水体为饮用水源的城市来说,情况尤为严重。水中的藻类会大大提高化学需氧量(COD)、生物需氧量(BOD)、悬浮固体(SS)等的浓度,增加水处理负担。藻类在过滤时会堵塞滤料,在氯化消毒时产生三卤甲烷(THMs)等有毒副产物。藻类代谢物如糖酸等在混凝过程中与混凝剂反应,降低处理效果,增加混凝剂用量,而生成的络合物又会导致管网腐蚀。藻毒素不能以常规方法去除[3]。因此,富营养化水体作饮用水源会严重影响水厂的工艺运行、腐蚀管网、恶化出水水质。

3 处理工艺

3.1 营养物质的控制

3.1.1 工农业废水控制

改进施肥方式,减少农业废水中氮磷的含量,加强水土保护,是全世界的共识,也是保护环境、防止水体富营养化的最佳方案,我国在这方面也作了持续的努力。然而,由于种种原因,效果不佳,部分地区水土流失日益严重。工业废水的处理近年来取得相当成绩,使水体富营养化得到了有效控制。

3.1.2 洗涤剂禁磷

生活污水中的磷25%来自含磷洗涤剂,许多国家均有禁止或限制使用含磷洗涤剂的政策,我国深圳市、太湖与滇池流域也采取了类似措施。然而,日本在禁磷前后对琵琶湖的监测表明,由于洗涤剂中的磷酸盐占水体总磷污染的比例较低,该政策并不能明显改变水中磷的含量。同时,洗涤剂中磷酸盐的替代品沸石会较大程度地增加污水处理厂污泥的体积,给污泥处理带来困难[4]。因此,人们对洗涤剂禁磷的环境效应有着很大的争论[5]。

3.1.3 城市污水除氮除磷

在城市污水处理中除氮除磷又称三级处理,在欧美等发达国家运用较多。三级处理有化学法和生物法2种,化学法以絮凝剂沉淀溶解性磷,再通过硝化和反硝化工艺处理;生物法利用微生物除氮脱磷,常用的有AO、AAO(A2O)、OAO(AO2)等工艺。为促进除磷,也有工艺投加挥发性有机酸或糖类物质[6,7]。三级处理主要是除氮,除磷效果不明显,而且某些工艺会造成二次污染[8]。此外,三级处理工艺复杂,费用较高,我国城市污水集中处理量还很低,难以大规模地在常规处理的基础上再增加三级处理。因此,生活污水中氮磷的控制在我国大部分地区尚难实行。随着城市化的进程和居民生活水平的提高,生活污水中氮磷会有进一步的上升。

3.1.4 分污引水

污水分流、部分排出污染水体中水量、引入清水冲污等措施虽然可以部分减轻污染水体的压力,但是工程巨大,而且将污染转移到分流区域,可能造成新的污染区。玄武湖和西湖的经验表明,污水分流和引水冲污难以取得预期效果,藻类繁殖在短暂受抑制(3个月)后又恢复原状[9,10]。

3.1.5 底泥挖掘

富含营养物质的底泥在一定条件下会释放出氮磷,成为水体的内源性污染源,因而底泥挖掘一度成为富营养化水体治理的重要措施。然而底泥挖掘工程巨大,挖出的底泥难以进一步处理,从经济上来说,这可能是最昂贵的措施。由于底泥中氮磷的吸收和释放过程复杂,目前尚无明确认识,底泥挖掘常常收不到预期效果。甚至因为破坏了水体底部生物和水生植物环境,将深层底泥暴露,使其中所含的氮磷溶解到水体中,而在一段时期内加深水华[3]。玄武湖和西湖的经验证明了该法弊病很多,必须慎重考虑[11~13]。

3.1.6 混凝除磷

投加混凝剂沉淀溶解性磷,使其不能被藻类利用,在美国和澳大利亚运用较多,常用的混凝剂有铁、铝盐[14]。该法效果不错,特别是在较深的湖泊,磷酸盐络合物可沉降到湖底同温层而不再返回表层。但是,在缺氧或氧化还原电位降低的条件下,这些络合物不稳定,会释放出溶解性磷。此外,混凝剂用于大面积水体时用药量大,可能与水体中其他物质发生不利反应,因此具有一定的潜在危险。

3.2 抑藻杀藻

3.2.1 深层曝气

针对藻类的过度繁殖引起表层以下厌氧状态,导致其他生物死亡,人们试图用机械搅拌或曝气来提高水中的溶解氧量。然而水体中氧的主要来源是水生植物的光合作用,富营养化水体表面并不缺氧,表面下水体因被藻类遮盖得不到阳光而缺氧,机械搅拌或曝气不能改变这一根本原因,收效甚微[15,16]。

3.2.2 药物除藻

常用的除藻剂有硫酸铜、氯、二氧化氯等,此外,臭氧和高锰酸钾作为除藻剂也有研究[17,18]。这些氧化剂可以较快地杀藻,并进一步氧化藻细胞损伤释放的代谢物质和有毒有害物质[19],效果显著。但是这些药剂价格较贵,而且对水生生物的影响以及与河水中溶解性离子的反应均未得到排除,可能引起二次污染。

3.2.3 生物控制

利用水生生物对藻类的捕食或竞争作用,投加这些抑制性的生物,再定期捕捞。该法投资省,而且利于建立合理的水生生态循环,因此,国内外从20世纪70年代起进行了广泛的研究[21,21,22]。在分析鱼的种群的基础上,可针对实际情况选择适当的鱼类以滤食藻类及食藻微生物,包括我国常见的梭鱼、鲢鱼、草鱼等。可用的经济类水生植物有凤眼莲、莲子草、慈姑、茭白、水花生、菱角等[20,23]。然而,这些生物在减少藻类的同时,本身也会排泄相当量的营养物,这意味着同时有较大比例的营养物进入矿化循环而没有真正被去除。水生生态十分复杂,在人为强烈干扰下,将造成系统不稳定,难以控制,不属于当地自然种群的引进生物可能留下长期隐患。因此,采用生物控制时必须仔细考虑带来的不利生态后果。

3.2.4 机械捕集

在水华出现时用船只捕捞藻类,收获的藻类可以加工成鱼食, 在上海等地有使用[24,25]。该法易于控制,短期效果显著,但在藻类大量繁殖后再去除,工作量极大,事倍功半。

3.2.5 超声波除藻

20世纪90年代日本开始进行超声波抑藻杀藻技术的研究,目前在千叶湖进行较大规模的试验。我国清华大学等单位也进行了一定研究。初步结果表明,适当频率和强度的超声波处理5min就可以严重抑制藻类生长(减少50%)。高效、迅速、简单、无二次污染等显著优点使得超声波抑藻杀藻具有很大的吸引力。

超声波污水处理的方法第8篇

关键词:水垢;超声波;水冷紫铜坩埚

1 水冷紫铜坩埚结垢特点及危害

水冷紫铜坩埚是钛材真空熔炼的的关键设备之一,根据调查显示我公司所有的水冷坩埚都存在结垢问题,结垢后的水冷紫铜坩埚换热效率下降50%,并且紫铜坩埚容易发生变形,每年给我公司带约为600~800万人民币的经济损失。

1.1 结垢特点

钛材在熔炼过程中,熔池的温度达到1700℃,钛溶液在坩埚中需要结晶,就需要通过紫铜坩埚的换热能力,降低钛溶液的内能。由于紫铜坩埚的工作温度较高,导致垢质大量析出。根据测量得:紫铜坩埚每月的结垢厚度约为0.7~0.8mm,需要每月进行清洗除垢,否则会因水垢太厚,换热效率太低而无法进行使用。

1.2 结垢后的危害

1.2.1 增大能耗

结垢后的紫铜坩埚导热系数较小,使得换热性能下降。而且垢层的存在减小了冷却水的流通面积,增加了流动阻力,直接导致了动力设备能耗的增加。

1.2.2 增加生产铜坩埚维护成本

为了补偿结垢后紫铜坩埚传热能力降低的问题,需要在设计紫铜坩埚换热时增加水流量,使得冷却水循环系统的水泵功率增加,增加了电能的损耗。

1.2.3 缩短紫铜坩埚寿命

由于结构问题,紫铜坩埚的换热效率降低,使坩埚一直处于高温工作状态,紫铜坩埚容易发生热应力变形。变形后的紫铜坩埚造成熔化后的钛锭难以顺利取出,造成坩埚报废。

2 超声波防除垢的工作原理

超声波的辐射能对被处理液体介质直接产生大量的空穴和气泡,也就是把液体拉裂而形成无效极微小的局部空穴,当这些空穴气泡破裂或互相挤压时,产生一定范围的强大的压力峰,这一强匿力峰能使积垢物质粉碎悬浮于液体介质中,并使已生成的积垢层破碎使其易于脱落,这就是超声波的空化效应。当超声波由金属外表面向里传播时,即会引起金属界面上的垢质跟随金属振动。但由于垢质的性态和弹性阻抗不同,垢质与金属会在换热界面上形成剪切应力作用,导致金属换热界面上的垢质层疲劳、裂纹、疏松、破碎而脱落,这就是超声波的剪切效应。

3 常用防垢技术与超声波防除垢技术的比较

目前工业领域运用较多的传统防垢技术主要有阻垢剂、离子交换及高频磁场技术,这些技术的优点是能实现在线防垢,缺点是防垢不彻底,仍需进行定期除垢,设备仍处于带垢运行状态;同时需要辅助设备,使得成本增加。

传统的除垢方法主要有酸洗、碱洗的化学方法,机械清洗以及胶球系统。酸洗和碱洗方法除垢,可以清除比较细致,但是会对紫铜坩埚造成一定的腐蚀,清洗后的液体排放还会造成对环境的二次污染;并且如果水垢比较厚时,需要较长时间进行浸泡,严重影响熔炼设备的运行率;同时清洗时需要大量的水,造成水资源的浪费。机械清洗虽然对水垢的厚度没有要求,清理的也比较彻底,但需设计制造专门的水垢清理设备,在清理的过程中还需要专人操作,并且需要在熔炼设备切换条件下进行,影响了正常生产,增加了清理成本。与传统的除垢技术相比,超声波除防垢技术有以下优点:

3.1 使用超声波防除垢技术,不需要进行酸、碱洗清理污垢,会延长紫铜坩埚的使用寿命。

3.2 使用超声波防除垢技术,减少了熔炼设备切换紫铜坩埚的次数,减少了设备的停机时间。

3.2 从提高生产效率、消除化学除垢和提高机械设备寿命计算,超声波防除垢技术具有较好的经济效益。

3.4 超声波防除垢技术,不对环境造成危害,具有较好的社会效益。

4 超声波防除垢的安装方法及节能分析

4.1 超声波设备的安装

我公司应用的c-5000型防垢器主要由超声波功率发生器、传输电缆和装于冷却水外水套的压电式换能器组成如图1所示。功率发生器机箱安装在安装熔炼设备的下炉室位置,将换能器安装在冷却水的外水套上如图1所示。

4.2 超声波防除垢设备的应用效果分析

针对我公司对水冷坩埚污垢治理情况进行调查与分析发现,超声波防除垢技术的应用切实地解决了我公司水冷紫铜坩埚的结垢问题,提高了传热效率,降低了能耗,减少了环境污染,同时给企业带来了巨大的经济收益。以下是引用了超声波防除垢技术,并且对安装设备前后运行参数进行跟踪调查。

图3 是安装超声波以前每个月清理时的实物照片,水垢的平均厚度约为≥0.4mm,并且十分坚硬;图4 是安装超声波以后的每个月观察时的照片,水垢的平均厚度≤0.1mm。由以下的两个照片对比观察:安装前的水垢每月的积累的水垢厚度严重影响了生产,必须停机清理;而安装超声波后的水垢符合生产要求,不用停机清理。由以上的分析可知安装超声波以后,紫铜坩埚表面的水垢符合生产要求,减少了停机时间。

5 结束语

如何有效的防、除垢,已经成为工业领域关注的热点问题,这个问题的解决将是节能减排的新突破点。目前的方法也很多,酸洗、碱洗、阻垢剂、机械清洗等,但其在不同程度上增加了成本,有的还会造成环境的二次污染。与传统方法相比,超声波防除垢技术是一种高效、环保的先进技术,具有广阔的市场潜力,而且我公司的应用案例表明,超声波防除垢技术能去的良好的节能减排的效果。

参考文献

[1]袁易全,陈思忠,冯若,等.近代超声波原理与应用[M].南京:南京大学出版社,1996.

[2]丁晓娥.超声波防除垢技术的应用研究[Z].2001.

[3]李雅莉.超声波清洗的原理与实际引用[J].清洗世界,2006;