首页 优秀范文 初中物理中的模型法

初中物理中的模型法赏析八篇

时间:2023-08-28 16:53:48

初中物理中的模型法

初中物理中的模型法第1篇

【关键词】物理模型 初中物理 重要作用

【中图分类号】G632 【文献标识码】A 【文章编号】1674-4810(2015)13-0130-01

模型在我们的日常生活中、工程技术和科学研究中经常见到,它对我们的生产生活具有很大的帮助。而物理模型就是将复杂问题转换为简单问题,通过画图形式直观表达知识的过程。学生可以通过物理模型的学习对疑难问题进行解答,突出物理问题的重要部分,为学生清晰地建立物理图像,更直观地解决问题,让复杂的物理问题简单化。这样不仅降低了难度,同时也帮助学生建立了信心,培养了学生的逻辑思维能力。

一 初中物理简述

初中物理是义务教育的基础学科,也是中考的必考科目。物理模型在初中物理教学中占据着主导地位,随着课程的改革,物理问题研究的不断加深,学生学习物理变得困难。因此,部分学生因为物理的难度渐渐失去了兴趣,导致总体成绩不高,物理教育得不到完善,教育教学不能满足现在的教学需求。物理作为一门自然科学课程,比较难学,不能单凭死记硬背,要有自己的一套学习方法和学习技巧,不能因为物理的难度而放弃这门学科的学习。从目前初中物理的教学模式来看,教师对物理概念比较重视,还是局限于传统的教学理念。部分教师在物理教学过程中,把物理概念当成教学重点,让学生死记硬背物理概念,导致学生很难理解物理概念的真正意义,从而对物理学习失去兴趣。针对物理学科,我们要制订合适学生自己的学习计划,首先应独立做题,了解物理过程;其次应认真听讲并做好相关记录;最后应主动向别人学习。当然,仅凭课堂上老师的讲解是远远不够的,课后要针对老师讲解的内容加以复习,尤其是疑点难点,必须加深理解,这样才能学好物理,产生对物理学习的欲望。

二 物理模型的基本内涵

物理模型,就是利用图像进行疑难问题的解析,让学生很快地解决物理问题。物理模型具有一定的作用,主要表现在以下几个方面:(1)把复杂的问题变得简单化。(2)依据教学内容制作相关模型。(3)利用物理模型做出科学预言。物理模型主要由两个部分组成:直接模型与间接模型。直接模型是指通过对物理情景的描述,很快地在脑海中浮现出清晰的图像。例如习题中的点、小球以及木块等作为研究对象。间接模型是指对描述的物理情景不能直观地在大脑中得以呈现,通过自身的想象力与逻辑思维形成的抽象图形。显而易见,间接模型和直接模型相比较,要比直接模型难得多。然而在物理教学中,大多都是以间接模型为核心,通过物理情景的描述以及学生的想象力,找出正确的研究对象、物理过程等因素,针对这些抽象的事物,进行抽象的研究。因此,我们要培养学生的物理模型化能力,必须正确选择研究对象,根据题中的情景描述,清晰地建立正确的物理模型,这样在物理学习中,一些疑点难点能快捷地解决,同时也降低了物理学习的难度,让学生更轻松地学习物理,产生对物理学习的求知欲,实现物理教学目标。

三 物理模型在初中物理教学中的作用

物理模型在初中物理教学中有着举足轻重的作用。在物理学习中,不要把物理概念当成重点,要实际结合物理模型来学习。通过物理模型的学习,不仅降低了物理学习的难度,让复杂的问题转化为简单的问题,让疑点难点得以解决。针对一些抽象事物,我们以画图形式清晰地在学生的脑海中浮现。不仅拓展了学生丰富的想象力,同时也培养了学生学习物理的逻辑思维。比如:教师在讲解八年级下册第六章第三节物质的密度一课时,教师可以创设相关教学情境,让学生的头脑中出现直接模型的观念,以这样的形式开展情境教学,通过观察和学生亲自体验,让学生觉得亲切自然,从而激发学生的求知欲望。或者利用简单、有趣的模型口诀吸引学生的注意力,这节有关密度的口诀可以是:实验测密度,质量比体积,等量替换法,密度就可知。通过将物理模型运用到初中物理课堂的方法,不仅培养了学生的观察能力和创造能力,还能培养学生的逻辑思维能力。让学生有效地学习物理,对物理学习产生热情,提高物理成绩的同时达到物理教学目的。

四 结束语

初中物理中的模型法第2篇

关键词:大地电磁;初始模型;约束反演;二维反演

1 概述

地球物理反演是一个寻找地球物模型,使其响应与实测结果相匹配的过程。其本质是一个最优化的问题,即构建合适的误差目标函数,求取满足精度要求的最小值。地球物理反演本身不可避免的存在着多解性,在解决实际地质问题中,工区的地质、钻孔以及其他物化探先验信息可以帮助构建更合理的初始模型,有效消除假二维反演中的假异常,减少反演的多解性。

2 模型正演

模型参考“全国电法及电磁法勘探正反演软件推荐会(杭州)”组委会提供的二维理论模型,电阻率略有改动。模型(图1)大体为“低-中高-高”三层结构,第一层(0~-4km)模拟表层破碎带,断裂带较多,电性结构较为复杂,高低阻地层互层。中间层(-4~-7km)为中高阻,下层(-7~-12km)是高阻地层,结构较为单一。

模型正演结果(图2)可以看出TE模式的视电阻率结果较TM模式好,出露地表的两个高阻体有所反映,但深部延伸形态反映不够清晰,中高阻层分层情况也不明显;TM模式的左右两边都出现了条带状的“挂面条”现象,这是由于在地表电性突变导致的静位移,是TM模式的明显特征。在相位剖面中,TE和TM模式均可反映出明显的三层结构,但对表层薄层结构分辨不够。因此本文采取TE模式数据进行反演研究。

3 一维反演结果

尽管如今大地电磁的反演算法已经发展到三维反演,但在现今的实测质料处理解释中运用较为成熟的仍是大地电磁的一、二维反演,其中一维反演的结果可以为解释提供依据,更重要的是为二维反演提供初始模型,线性算法的二维反演的结果对初始模型的依赖性较强,这意味着一维反演的结果尤其重要。本文对模型TE数据进行了Bostick、Occam一维反演计算。

图3为模型的一维反演结果,总体来看,Occam反演结果较圆滑,层状反映不明显,浅层构造都基本没有反演出来;Bostick反演结果对左右两个小的斜向的高阻条带反映较为明显,且深部形态也有体现,但在浅部中间位置低高阻相间的层状结构没有反映出来,整体表现为一个低阻体,深部电性界面与实际模型有所差异。

4 约束初始模型及二维反演结果

本文采用稳定高速的NLCG反演,采用不同初始模型进行二维NLCG反演,对比约束初始模型前后的效果。约束反演是在已知地层结构的先验信息的基础上进行的,在反演过程中用先验信息对模型加以约束,以期望反演出符合地质构造的结果。在实际资料的处理中,很多工区都是多方法勘探,包括地震、钻井、重磁勘探等等,可以利用已知资料对大地电磁反演过程中的初始模型加以约束。本文理论模型的反演试算过程中,地层构造都是清楚的,在反演过程中可以根据理论模型对反演的初始模型加以约束。文本通过MTsoft2D2.4软件约束初始模型,先进行模型正演数据的一维反演,查看一维反演的结果与实际模型的差别,然后在一维反演结果的基础上做相应编辑,将修改后的模型作为二维NLCG反演的初始模型,经过迭代计算后得到图4-4中的结果。

图4为不同初始模型的二维NLCG反演结果,其中初始模型榫匀半空间结果比较粗糙;Bostick的二维反演与一维反演结果很相似,只反映出了很粗的结构,甚至掩埋了一维结果中的一些信息,浅部的低阻中层间结构没有反映出来,深部的电性变化的界面也与实际模型有所差异;以一维Occam为初始模型的反演结果中,浅部效果相对较好,界面明显,模型浅部中间段的高低阻相间的结果反映较好,但是深部却与模型差异很大;在一维Occam的反演基础上,利用已经模型约束后的NLCG结果,反演结果与实际模型对应较好,且电性界面清楚,反演效果很好。

5 结束语

二维反演中选择不同的初始模型,二维反演结果差别大。以均匀半空间为初始模型的二维反演结果能反映出模型宏观的特征,仅具有一定参考价值。尽管解决的是二维地质问题,但二维反演依赖初始模型,其结果可能与一维初始模型相似,甚至效果更差。

通过先验信息约束初始模型,可以有效消除反演中的假异常,降低反演多解性。在实际的资料处理解释中,如果有工区的地质地球物理信息,利用已知的信息对初始模型加以约束,然后进行反演计算,可以达到事半功倍的效果。

参考文献

[1]陈乐寿,王光愕.大地电磁测深法[M].地质出版社,1990.

[2]Railway[J].Coal Geology & Exploration,2012.

[3]汤井田,任政勇,化希瑞.地球物理学中的电磁场正演与反演[J].地球物理学进展,2007,22(4):1181-1194.

[4]柳建新,董孝忠,郭荣文.大地电磁测深法勘探-资料处理、反演与解释[M].北京:科学出版社,2012.

[5]李强强,闵刚.大地电磁中覆盖层对断层正演响应的影响[J].科技创新与应用,2015(33):51-52.

[6]万汉平.大地电磁测深的TE和TM极化模式对比研究[D].成都理工大学,2010.

初中物理中的模型法第3篇

论文关键词:初中物理

 

科学方法是连接知识和能力的纽带。“掌握一种科学方法胜过解答十个问题。”对研究方法的学习和考查体现着一种新的教学理念,同学们只有真正掌握了研究方法,才能有效解决实际问题,真正提高自己的创新意识和能力。

《新课程标准》要求,在突出科学探究内容的同时,重视研究方法的指导,使学生在进行科学探究、学习物理知识的过程中,逐渐拓宽视野,初步领悟到科学研究方法的真谛。因此初中物理论文初中物理论文,考查研究物理问题的方法,成为当前和今后中考的热点。

初中物理常用的研究方法有:控制变量法、等效替代法、转换法、推理法、模型法、类比法等。

一、控制变量法

所谓控制变量法,就是在研究和解决问题的过程中,对影响事物变化规律的因素和条件加以人为控制,只改变某个变量的大小,而保证其它的变量不变,最终解决所研究的问题。控制变量法是中学物理中最常用的方法,也是中考出题最多的方法。

在初中物理课本中,应用这种方法的实验有:

理想斜面实验、探究力与运动的关系、探究影响滑动摩擦力大小的因素、探究影响压力的作用效果的因素、探究影响液体压强大小的因素、探究影响浮力大小的因素、蒸发的快慢与哪些因素有关、探究影响滑轮组的机械效率的因素、探究影响动能大小的因素、探究影响重力势能大小的因素、探究影响导体电阻大小的因素、验证欧姆定律、探究影响电流做功多少的因素、探究影响电流的热效应的因素、探究影响电磁铁磁性强弱的因素、比热容概念的引入等

二、等效替代法

在物理实验中有许多物理特征、过程和物理量要想直接观察和测量很困难,这时往往把所需观测的变量换成其它间接的可观察和测量的变量进行研究,这种研究方法就是等效法。

等效替代法是常用的科学思维方法。等效是指不同的物理现象、模型、过程等在物理意义、作用效果或物理规律方面是相同的。它们之间可以相互替代,而保证结论不变。等效的方法是指面对一个较为复杂的问题,提出一个简单的方案或设想,而使它们的效果完全相同,从而将问题化难为易,求得解决。

初中物理课本中应用这种方法的有:

1、探究平面镜成像特点时用另一支蜡烛在玻璃板后面去等效像2、等效电路 3、串并联总电阻 4、多个分力与合力等效 5、物体的重心等论文参考文献格式。

三、转换法

对于不易研究或不好直接研究的物理问题,而是通过研究其表现出来的现象、效应、作用效果间接研究问题的方法叫转换法。

初中物理中应用了这种方法的有:

1.研究物体内能与温度的关系(我们无法直接感知内能的变化,只能转换成测出温度的改变来说明内能的变化);

2.在研究电热与电流、电阻的关系时,将电热的多少转换成温度计液柱上升的高度;

3.我们在研究电功与什么因素有关的时候,将电功转换成砝码上升的高度;

4.在我们回答动能与什么因素有关时,我们将动能转化为小木块在平面上被推动的距离,距离越远则动能越大。

5.证明声音是由振动产生的,敲击音叉后放入水中,水花四溅。

注意:等效法与转换法很相似,它们的区别是“等效替代法” 中相互替代的两个量种类相同,大小相等 ,而“转换法”中的两个物理量有因果关系,并且性质往往发生了改变如

转换法: 电流大小用灯泡亮度体现; 磁场的强弱用小磁针偏转的幅度体现

等效替代法: 分力相叠加是合力 ;小石块体积用排开水的体积代替

四、理想模型法

实际现象和过程一般都十分复杂,涉及到众多因素,采用模型方法可起到简化和纯化的作用.忽略次要因素,从复杂事物中抽象出理想模型,合理近似的反应所研究事物的本质特征,这种研究问题的方法叫理想模型法.

在初中物理课本中,应用这种方法的有

1.光线(光线是看不见的,我们使用一条看得见的实线来表示,就将问题简化利用了理想化模型)

2.磁感线

3.电路图是实物电路的模型

4.力的示意图或力的图示是实际物体和作用力的模型。

5.实验室常用手摇交流发电机及挂图来研究交流发电机的原理和工作过程

6.研究连通器原理时用到液片模型。

7.研究肉眼观察不到的原子结构时建立原子核式结构模研究肉眼观察不到的原子结构时建立原子核式结构模型。

五、科学推理法

推理法是根据已知物理现象和规律,通过想象和推理对未知的现象做出科学的推理和预见.推理法是在观察实验的基础上,忽略次要因素初中物理论文初中物理论文,进行合理的推理,得出结论,达到认识事物本质的目的。理想实验是研究物理规律的一种重要的思想方法,它以大量的可靠的事实为基础,以真实的实验为原形,通过合理的推理得出物理规律.

在初中物理课本中,应用这种方法的有

1、声音不能在真空中传播用推理法得出

2、研究物体运动状态与力的关系时,推理得出惯性定律。

六.类比法

类比法是指将两个相似的事物做对比,从已知对象具有的某种性质推出未知对象具有相应性质的方法.类比法在物理中有广泛的应用。所谓类比,实际上是一种从特殊到特殊或从一般到一般的推理。它是根据两个(或两类)对象之间在某些方面的相同或相似而推出它们在其他方面也可能相同或相似的一种逻辑思维。在物理教学中,类比方法可以帮助理解较复杂的实验和较难的物理知识。

在初中物理课本中,应用这种方法的有

1、用水流类比电流 2、用水压类比电压 3、用水波类比声波 4、用太阳系的结构类比原子的结构。

总之,大家要养成良好思维习惯,在解决问题时要尝试运用各种物理研究方法,不断提高科学素质,这既是中考热点也是以实现课程改革的目标。

初中物理中的模型法第4篇

    关键字:梯度  物理模型  学习习惯

    随着军训的开始,又一批新生进入高中的学习生活,开始上课之后,学生普遍认为高一物理难学,原因就是学生能力与高中物理教学要求的差距大。由于高一物理是高中物理学习的基础,因此高中物理教师必须认真研究教材和学生,掌握初、高中物理教学的梯度,把握住初、高中物理教学的衔接,才能提高高中物理教学质量,才能让学生完成由初中到高中的过渡,进入高中的物理学习。

    一  高中与初中物理教学的梯度

    初中物理教学是以观察、实验为基础,使学生了解力学、热学、声学、光学、电学和原子物理学的初步知识以及实际应用;高中物理教学则是采用观察实验、抽象思维和数学方法相结合,对物理现象进行模型抽象和数学化描述,要求通过抽象概括、想象假说、逻辑推理来揭示物理现象的本质和变化规律。初中物理教学以直观教学为主,在学生的思维活动中呈现的是一个个具体的物理形象和现象,所以初中学生物理知识的获得是建立在形象思维的基础之上;而高中较多地是在抽象的基础上进行概括,在学生的思维活动中呈现的是经过抽象概括的物理模型。

    由于初中物理内容少,问题简单,讲解例题和练习多,课后学生只要背背概念、公式,考试就很容易了。而高中物理内容多而且难度大,各部分知识相互联系,有的学生仍采用初中的那一套方法对待高中的物理学习,结果是学了一大堆公式,虽然背得很熟,但一用起来就不知从何下手,学生感到物理深奥难懂,从而心理上造成对物理的恐惧。高中物理对学生运用数学分析解决物理问题的能力提出了较高要求,在教学内容上更多地涉及到数学知识,物理规律的数学表达式明显加多加深,例如:匀变速直线运动公式常用的就有10个之多,每个公式涉及到四个物理量,其中三个为矢量,并且各公式有不同的适用范围,学生在解题常常感到无所适从;开始用图象表达物理规律,描述物理过程;矢量进入物理规律的表达式。    

    二  如何搞好初、高中物理教学的衔接

    1.重视教材与教法研究

    高中物理教师不单是研究高中的物理教材,还要研究初中物理教材,了解初中物理教学方法和教材结构,知道初中学生学过哪些知识,掌握到什么水平以及获取这些知识的途径,在此基础上根据高中物理教材和学生状况分析、研究高中教学难点,设置合理的教学层次、实施适当的教学方法,降低"阶差",保护学生物理学习的积极性,使学生树立起学好物理的信心。

    2.坚持循序渐进原则

    高中物理教学大纲所指出,教学中应注意循序渐进,知识要逐步扩展和加深,能力要逐步提高。高中教学应以初中知识为教学的出发点逐步扩展和加深;教材的呈现要难易适当,要根据学生知识的逐渐积累和能力的不断提高,让教学内容在不同阶段重复出现,逐渐扩大范围和增加难度。

    3.透析物理概念和规律

    使学生掌握完整的基础知识,培养学生物理思维能力,能力是在获得和运用知识的过程中逐步培养起来的。首先要加强基本概念和基本规律的教学,要重视概念和规律的建立过程,让学生知道它们的由来;其次弄清每一个概念的内涵和外延及来龙去脉,要使学生掌握物理规律的表达形式的同时,明确公式中各物理量的意义和单位,规律的适用条件及注意事项。

    4.物理模型的建立

    高中物理教学中常用的研究方法是确定研究对象,对研究对象进行简化建立物理模型,在一定范围内研究物理模型,分析总结得出规律,讨论规律的适用范围及条件。建立物理模型是培养抽象思维能力、建立形象思维的重要途径,要通过对物理概念和规律建立过程的讲解,使学生领会这种研究物理问题的方法;通过规律的应用培养学生建立和应用物理模型的能力,以实现知识的迁移。

    物理模型建立的重要途径是物理习题讲解,习题讲解要注意解题思路和解题方法的指导,有计划地逐步提高学生分析解决物理问题的能力。讲解习题时,要把重点放在物理过程的分析,并把物理过程图景化,让学生建立正确的物理模型,形成清晰的物理过程。物理习题做示意图是将抽象变形象、抽象变具体,建立物理模型的重要手段,要求学生审题时一边读题一边画图,养成良好的习惯。解题过程中,要培养学生应用数学知识解答物理问题的能力,学生解题时的难点是把物理过程转化为抽象的数学问题,再回到物理问题中来,教学中要帮助学生闯过这一难关。

    5.学习习惯培养。

    教育家叶圣陶先生指出:“教育的本旨原来如此,养成能力,养成习惯”,培养学生良好的学习习惯是教育的一个重要目的,也是培养学生能力、实现教学目标的重要保证。如何培养良好的学习习惯,首先是要培养学生独立思考的习惯,独立思考是学好知识的前提,学生经过独立思考,就能很好地消化所学知识,才能真正想清其中的道理,从而更好地掌握它。其次培养学生自学能力,使其具有终身学习的能力,阅读是提高自学能力的重要途径,阅读是对学生进行智育的重要手段,阅读物理教材不能一扫而过,而应潜心研读,边读边思考,挖掘提炼、对重要内容反复推敲,对重要概念和规律要在理解的基础上熟练记忆,养成遇到问题能够独立思考以及通过阅读教材、查阅有关书籍和资料的习惯。

初中物理中的模型法第5篇

关键词:思维方法;初中科学;高中物理;衔接

在高一新课程中,物理难教难学一直是困扰着师生的一个问题。其重要原因,就在于初中科学与高中物理的教学衔接上出现了“架空”现象。笔者采用师生访谈的形式,尝试剖析初中科学与高中物理教学衔接中出现的思维方法问题。本文从思维方法角度,透视初中科学与高中物理教学衔接上出现问题的原因,探讨针对性的解决策略,以期提高初中科学和高中物理教学的有效性。

一、初中科学与高中物理思维方法在衔接中存在的断层

先看初中科学老师的访谈反馈。初中科学中的物理现象和物理过程,大多是“看得见,摸得着”,而且从教学内容看,与日常生活现象有着密切的联系。学生在学习过程中的思维活动,大多属于生动的自然现象和直观实验为依据的具体的形象思维,较少要求应用科学概念和原理进行逻辑思维等抽象思维方式。练习题大多要求学生解说现象,计算题一般直接用公式就能得出结果。从教学要求看,初中要求学生大面积及格,教学难度基本控制在课标范围内,对问题的解决停留在模仿、套用公式上。再看高中物理老师的访谈反馈。高中物理学习的内容在深度和广度上比初中有了很大的增加,研究的物理现象比较复杂。分析物理问题时不仅要从实际出发,有时还要从建立物理模型出发,要从多方面、多层次来探究问题。在物理学习过程中抽象思维多于形象思维,动态思维多于静态思维,需要学生掌握归纳,类比推理和演绎推理方法,特别要具有科学想象能力。要求学生有一定的自学能力、分析综合能力及知识迁移能力等,对应用数学的能力要求比较高。再看高一学生的一种常见状况:初中科学学得不错,兴趣也浓,中考成绩也不错;高中却遇到比较大的困难,上课能听懂,作业却不会做,都不知道怎么学了。根据上述现状,笔者从思维方法角度,对初中科学与高中物理的衔接断层问题做如下分析:问题一:初高中教师的教学思维存在着脱节现象。初中科学学业考试命题注重密切联系生活实际,考查学生在实际情景中提取信息、分析和处理信息的能力,重视考查学生的科学探究过程和方法,培养学生从整体上认识事物、从科学本质上分析现象和把握规律的能力。这种强调能力立意,符合新课程精神。但是在实际教学中,特别是在九年级时,应试现象太害人。教师为考试而教,学生为考试而学的现象十分严重,教师包揽一切,学生一味等着喂食,功利性太强。以致部分学生喜欢做题目,不喜欢动手做实验,关注题目的结果,不注重思维的过程。在课堂上教师习惯于学生能正确回答提出的问题,却很少关心有多少学生是否知其所以然,忽视问题解决的思维过程。问题二:初高中课程对学生思维能力的要求存在着脱节现象。初中教材中比较直观的、对思维能力要求较低的内容,如测量、力、运动、用电常识,一般都能较好地掌握,达到教材要求;而教材对学生思维能力要求较高的内容,如八年级教材中压强、浮力和九年级教材中电功率,学生学习起来比较困难,出错最多。这说明初中生的思维能力需要一个发展过程。课标的实施,初中科学降低了理论思维水平,强调从演示实验与生活常识出发学习科学,将这种思维的培养要求向后推移到高一。因此高一学生的智力表现、思维水平、成绩变化大起大落的情况还是较为常见,且在物理科、抽象要求较高的学科出现了大面积的不及格现象,到高二以后则又相对比较稳定。从这一变化情况来看,高一是思维质变的关键期,与此相适应的高中教材的思维要求也发生了很大变化,这是一部分同学进入高一不适应的原因。另外,初中实行素质教育,而高中是以高考为指挥棒的应试教育,这更加剧了这种不适应性。

二、提高初中科学课堂效益,实现思维方法衔接的几种策略

1.加强实验教学,培养学生形象思维能力。形象思维除了具有一般思维的共性外,与抽象思维比较,它的基本特点是形象性。在中学物理教学中,历来重视概念、规律的教学,重视抽象思维能力的培养。但是,如果忽视观察、演示实验等直观形象的教学,忽视形象思维能力的培养,抽象思维能力也会因为缺少形象的支持而难以发展。初中学生正处于由形象思维向抽象思维的过渡期,高中学生正处于抽象思维形成的关键期。由于中学生的抽象思维还是比较初级的、简单的,他们掌握抽象的物理概念和定律,仍然直接或间接与具体的形象相联系。在实验中不仅有形象的感受,还有形象的识别和描述。实验过程是形象思维活动的过程。如在教学过程中,常常会发现所探究的问题无法呈现出实验现象,有时即便有现象也是肉眼看不见的。这就要求我们想方设法使实验的现象“显现”出来。通过实验的设计和实验过程培养学生形象思维能力。2.渗透模型方法,逐步培养学生的抽象思维能力。在科学研究中,人们用过一定的科学方法,建立一个适当的模型反映和替代客观对象,并通过这个模型来揭示客观对象的形态、特征和本质,这种方法就是模型方法。高中物理教材中,要建立大量的物理模型,例如:这就要求在初中教学中,使学生明白,建立合理的模型和理想化过程对于学习和研究物理问题的重要性,以提高他们学习这种方法的自觉性。在传授知识的同时,向学生渗透处理较复杂的问题时采用的具体分析、合理简化、科学抽象的方法,有利于抽象思维能力的培养。在课堂上还可向学生渗透科学发展的历史,可以说是一个模型建立、完善的历史。模型的不断提出、修正、更新推动着科学的发展,使人们对物质世界的认识不断深化,不断逼近事物的本质。初中阶段这种模型思维方法的渗透,避免了学生进入高一接触到理想模型时的陌生感。为高中阶段学习建立“理想模型”作了铺垫,在建模的过程中又培养了学生的抽象思维能力。3.加强解题指导,培养学生动态思维能力。根据思维对象不断运动变化的特点,适时改变思维的程序和方向,并调控思维的过程,从而实现思维的目标,这样的思维方式,叫做动态思维。与动态思维相反,客观事物所具有的相对静止和稳定状态在思维活动中的反映,就是静态思维。物理学研究的物质世界是运动变化,各物理量之间相互联系、相互制约,在不断变化过程中,从相互关系中掌握概念和物理规律。要学好物理,高中生要具备动态思维。从高一学生的错题根源来看,学生对孤立的、不变的问题,易于理解,而对于变化的、相互联系的问题,则较难掌握。从思维发展来看,高一年级的新学生比较熟悉静态思维,动态思维能力亟待培养。所以很有必要树立初中生的动态思维意识。4.重视科学实践活动,发展学生创造性思维。能在原有的经验、知识和方法的基础上,勇于探索,善于创新,取得新颖的、有一定科学价值的成果,这样的思维活动称为创造性思维。创造思维有层次高低之分:在社会发展的历史上,取得重大的新发明,建立崭新的科学理论,对国家作出卓越的贡献,这是高层的创造思维;对于正在学习的学生个体来说,能大胆地提出问题,巧妙地运用前所未有的新成果,也是创造思维活动。这种新异的、符合任务要求的高品质的思维方式对学好高中物理有极大的帮助。初中科学综合实践,倡导学生自主选择,主动探究,养成独立思考及反省的习惯,系统地解决问题和冲突。在教学中,教师要启发学生自己建构知识,注重引导学生主动探究知识,重视知识的建构。从而逐渐发展学生的创造性思维。综上所述,使初中科学和高中物理教学有效衔接,不仅仅是高中物理老师的责任,也是初中科学教师应尽的义务。在思想上,初中教师要做好“送”的准备,在策略上,要实施相应的有效手段,向课堂要效益,搭好思维方法台阶,同时也要积极提升自身的专业素质。由于初中科学教师的专业背景不同,很有必要参加各种研修。教师要深入研读课程标准,领会新课程的内涵。通过校本研修提高初中科学教师的物理专业素养,不断提高自己的业务水平。加强横向和纵向集体备课,即加强一个年级段的集体备课和初中整个阶段的科学课程中物理章节的集体备课,以提高教师驾驭新课程的水平。利用网络研修解决教师教学上的困惑,通过网络研修,教师间可以跨越时间和空间的限制,相互学习、交流与合作,实现资源和智慧的共享,促进自我素质迅速成长。缩小初高中教师的教学思维的差异,为初高中教学架设“阶梯”,让学生都能顺利越过初、高中物理学习的台阶,实现初、高中的有效衔接。

作者:姚掌仙 单位:浙江省桐乡市洲泉中学

参考文献:

[1]赵海燕译.美Roberj.SternbergLouiseSpearSwerling著.思维教学.中国轻工业出版社

[2]朱龙翔.物理教学思维方式.首都师范大学出版社

[3]义务教育课程标准实验教科书.初中科学6册

初中物理中的模型法第6篇

一、高中与初中物理教学的梯度

初中物理教学是以观察、实验为基础,使学生了解力学、热学、声学、光学、电学和原子物理学的初步知识以及实际应用;高中物理教学则是采用观察实验、抽象思维和数学方法相结合,对物理现象进行模型抽象和数学化描述,要求通过抽象概括、想象假说、逻辑推理来揭示物理现象的本质和变化规律。初中物理教学以直观教学为主,在学生的思维活动中呈现的是一个个具体的物理形象和现象,所以初中学生物理知识的获得是建立在形象思维的基础之上;而高中较多地是在抽象的基础上进行概括,在学生的思维活动中呈现的是经过抽象概括的物理模型。

由于初中物理内容少,问题简单,讲解例题和练习多,课后学生只要背背概念、公式,考试就很容易了。而高中物理内容多而且难度大,各部分知识相互联系,有的学生仍采用初中的那一套方法对待高中的物理学习,结果是学了一大堆公式,虽然背得很熟,但一用起来就不知从何下手,学生感到物理深奥难懂,从而心理上造成对物理的恐惧。高中物理对学生运用数学分析解决物理问题的能力提出了较高要求,在教学内容上更多地涉及数学知识,物理规律的数学表达式明显加多加深,例如:匀变速直线运动公式常用的就有10个之多,每个公式涉及四个物理量,其中三个为矢量,并且各公式有不同的适用范围,学生在解题时常常感到无所适从;开始用图象表达物理规律,描述物理过程;矢量进入物理规律的表达式。

二、如何搞好初、高中物理教学的衔接

1.重视教材与教法研究

高中物理教师不单是研究高中的物理教材,还要研究初中物理教材,了解初中物理教学方法和教材结构,知道初中学生学过哪些知识,掌握到什么水平以及获取这些知识的途径,在此基础上根据高中物理教材和学生状况分析、研究高中教学难点,设置合理的教学层次、实施适当的教学方法,降低“阶差”,保护学生物理学习的积极性,使学生树立起学好物理的信心。

2.坚持循序渐进原则

高中物理教学大纲所指出,教学中应注意循序渐进,知识要逐步扩展和加深,能力要逐步提高。高中教学应以初中知识为教学的出发点逐步扩展和加深;教材的呈现要难易适当,要根据学生知识的逐渐积累和能力的不断提高,让教学内容在不同阶段重复出现,逐渐扩大范围和增加难度。

3.透析物理概念和规律

使学生掌握完整的基础知识,培养学生物理思维能力,能力是在获得和运用知识的过程中逐步培养起来的。首先要加强基本概念和基本规律的教学,要重视概念和规律的建立过程,让学生知道它们的由来;其次弄清每一个概念的内涵和外延及来龙去脉,要使学生掌握物理规律表达形式的同时,明确公式中各物理量的意义和单位,规律的适用条件及注意事项。

4.物理模型的建立

高中物理教学中常用的研究方法是确定研究对象,对研究对象进行简化建立物理模型,在一定范围内研究物理模型,分析总结得出规律,讨论规律的适用范围及条件。建立物理模型是培养抽象思维能力、建立形象思维的重要途径,要通过对物理概念和规律建立过程的讲解,使学生领会这种研究物理问题的方法;通过规律的应用培养学生建立和应用物理模型的能力,以实现知识的迁移。

物理模型建立的重要途径是物理习题讲解,习题讲解要注意解题思路和解题方法的指导,有计划地逐步提高学生分析解决物理问题的能力。讲解习题时,要把重点放在物理过程的分析,并把物理过程图景化,让学生建立正确的物理模型,形成清晰的物理过程。物理习题做示意图是将抽象变形象、抽象变具体,建立物理模型的重要手段,要求学生审题时一边读题一边画图,养成良好的习惯。解题过程中,要培养学生应用数学知识解答物理问题的能力,学生解题时的难点是把物理过程转化为抽象的数学问题,再回到物理问题中来,教学中要帮助学生闯过这一难关。

5.学习习惯的培养

教育家叶圣陶先生指出:“教育的本旨原来如此,养成能力,养成习惯。”培养学生良好的学习习惯是教育的一个重要目的,也是培养学生能力、实现教学目标的重要保证。如何培养良好的学习习惯,首先是要培养学生独立思考的习惯,独立思考是学好知识的前提,学生经过独立思考,就能很好地消化所学知识,才能真正想清其中的道理,从而更好地掌握它。其次培养学生自学能力,使其具有终身学习的能力,阅读是提高自学能力的重要途径,阅读是对学生进行智育的重要手段,阅读物理教材不能一扫而过,而应潜心研读,边读边思考,挖掘提炼、对重要内容反复推敲,对重要概念和规律要在理解的基础上熟练记忆,养成遇到问题能够独立思考以及通过阅读教材、查阅有关书籍和资料的习惯。

为了提高学生的阅读兴趣与效果,教师可以根据教材重点设计思考题,使学生有目的地带着问题去读书,设计一些对重点的、关键性的内容能激起思维矛盾的思考题,引起学生的思维兴趣和思维活动,同时还可以充分利用现代信息技术,利用电脑动画再现物理情景。同时强调科学记忆,反对死记硬背,准确的记忆是正确应用的基础,理解是物理记忆的关键,对比联系是记忆的有效方法,将所学知识与该知识应用的条件结合起来,形成条件化记忆才能有效地用来创造性地解决问题。

初中物理中的模型法第7篇

预测微生物学

预测微生物学是将特定条件下的食品微生物生长、繁殖、残存和死亡等反应进行细化,并结合计算机技术、数理统计和微生物知识,客观地评价食品在加工、流通和贮藏等条件下的食品质量安全和货架期[2]。相比其他传统微生物对食品质量和货架期的检测指标,微生物预测学对食品和微生物间关系分析更加透彻。根据不同食品的加工、流通和贮藏情况,结合食品所处的外界特征及条件,能够在不进行微生物检测的情况下更快速的对食品的安全性和货架期进行预测,从而对食品的质量和安全做出快速反应和预测[3,4]。预测微生物学的产生为保证食品质量和安全性提供了量化的依据[5]。在预测微生物学创始之初,国内外对预测微生物学的主要研究对象为食品致病微生物[6],随着食品企业对食品自身的品质关注度增大,预测微生物模型逐渐发展到食品腐败微生物[7]。由于微生物预测模型误差小于微生物实验室所带来的误差,这也使得微生物预测模型在食品工业和食品检测领域应用更加广泛[8]。

微生物预测模型的分类及发展

微生物预测模型有多种分类方法。依据描述微生物的情况,分为描述微生物生长的数学模型和描述微生物失活的数学模型;依据基础数学建立的模型分为概率型模型和动力学模型[9~10]。Buchanan[11]基于变量类型把模型分为三个层次:初级模型(PrimaryLevelModels)指在特定培养条件下,微生物生长/存活与时间的反应;二级模型(SecondaryLevelModels)指参数与环境变量对微生物生长/存活特性的关系;三级模型(TertiaryLevels)指将初级模型和二级模型通过计算机软件形式合并的模型形式。

1初级模型

初级模型主要是描述特定条件下,微生物生长与时间的关系。初级模型可以通过等式或方程形式量化并预测菌落单位(CFU/mL)、毒素形成、底物水平和代谢产物。初级模型是计算机建模的基础。通过记录特定时间条件下,单位浓度的微生物对数变化,并根据特定时间条件下,单位浓度的微生物对数变化推导出一系列的线性关系。Baranyi[13]根据分枝杆菌(Mycobacterium)实验[16]和在牛奶中分离单增李斯特菌(L.monocytogenes)10℃条件下贮藏的生长速率实验[17],提出微生物的生长速率是与微生物的生长时间有关的,并认为微生物特定条件下的生长速率应遵循μ=(dM/dt)/M。并在此基础上,都验证了公式的准确性。近年来,描述微生物初级模型的数学方程包括Gompertz方程,Logistic方程,Baranyi方程和Monod方程等[12~15]。随着对微生物生长速率的进一步细化,初级模型得到了更深入的发展,Gompertz方程在对初级模型的描述和反映得到广泛应用。Gibson等[18]首先将肉毒梭菌(C.botulinum)生长参数应用于Gompertz方程并进行拟合。得到方程,见公式(1)。Bratchell等[19]运用大量数据对公式(1)准确性进行验证。结果发现,检测指标超过10个点的微生物生长曲线与公式的拟合度较高。Buchanan等[20]在对单增李斯特菌(L.monocytogenes)稳定期的微生物数量进行测定时发现,在NaCl,pH,温度,亚硝酸钠条件水平一定时,单增李斯特菌稳定期时数量为109.2这一常数,这样就将公式(1)中的a1重新定义为9.2-N0。这一理论的提出也使Gompertz方程的应用更加广泛,也为二级模型和三级模型的计算奠定基础。Nt=N0+a1exp(-exp(-a2(t-τ)))(1)

2二级模型

二级模型主要描述初级模型条件下的参数在不同环境条件下的反应。目前,二级模型中比较常见的方法有响应面法,Arrhenius模型和平方根模型。响应面法是通过一系定试验,用多项式函数在失效概率上收敛于真实的隐形极限状态函数。由于误差平方和较小,这使得模型参数的对数值拟合度更高。同时,回归方程可以推导出未知参数值,从而增大判断实际数据的准确性。这些都使得响应面法在模型的建立和使用上得到广泛的应用。Spencer[21]首次应用简单的线性关系报道了-1℃~25℃条件下鲜鱼的腐败速率,并提出该条件下鲜鱼的腐败速率可以用公式(2)表示。至此,在初级模型建立基础上,延伸的二阶和多项参数的响应面法应用更加广泛。Robert[22]模拟logistic方程中的参数Y,并提出多项式方程(3),更多参数的提出与细化使得多参数研究加大[23~25],也使得响应面法应用更加广泛。Arrhenius模型最早应用于微生物模型时,主要是通过限制速率的酶促反应来计算微生物生长速率的,一些特定温度条件下的微生物的生长曲线是运用分光光度法通过Arrhenius模型生成的[26]。Schoolfield等[27]重新修订了早期的Arrhenius模型,将微生物的生长温度延伸。同时取代酶促反应,扩大了微生物生长活力范围,将微生物生长曲线推广至低于微生物适宜生长温度。Zwietering等[28]验证了Schoolfield的理论,并应用修订后的Gompertz方程成功描述了多参数条件下微生物生长情况。平方根模型方法主要根据生长速率和温度的平方根的线性关系进行建立的。平方根模型最主要的特征就是当可以根据温度变化来推导微生物生长速率[29],见公式(4)。由于微生物生长达到T0温度条件下很难观察或生长。因此,平方根模型将温度范围重新扩增,见公式(5)。Gill[30]首先使用平方根模型对9种培养基培养下的大肠杆菌(E.Coli)生长速率进行检验。结果发现6种培养基条件下的大肠杆菌生长速率与平方根模型拟合效果差。然而,Gill坚持认为在某种特定的培养基条件下模型仍然可以准确描述微生物的生长速率。这一观点的提出也使得平方根模型变化更加细致,根据aw,pH,温度等参数的平方根模型相关研究也逐步开展。运用NaCl配置不同aw对木糖葡萄球菌(S.xylosus)进行培养,采用平方根模型推算在不同温度条件下的生长速率,实验结果均表现出良好的拟合度[31]。同时,相关实验通过pH变化得出2种食源性微生物生长速率[32]。McMeekin等[33]综合aw,pH,温度等参数提出新的平方根模型,见公式(6),这也是未来多参数模型构建的基础。

3三级模型

三级模型主要是根据计算机程序,集成初级模型和二级模型的数据,转化成的一种微生物预测软件。目前现有的微生物预测软件主要有美国农业部微生物食品安全研究中心的“PathogenModelingProgram”[34];英国农业、渔业和食品部开发的“FoodMicromodel”软件[35];澳大利亚Tasmania大学开发的多因子分析系统FSP等[36];中国水产科学研究院东海水产研究所研发的罗非鱼品质控制“FishShelfLifePredictor”系统等[37]。

微生物预测模型在食品工业中的应用

微生物预测模型的构建是从2个方向上发展的,即基于引起食品腐败的特定腐败微生物的预测模型和基于食品致病微生物生长因素的预测模型。前者的研究主要为食品货架期预报和监控,而后者的研究主要为食品致病微生物的安全监测和管理。

1食品腐败微生物预测模型在食品工业的应用

食品加工流通过程中可能会受到其他微生物的侵染,然而在贮藏一定条件下,特定腐败微生物会在增殖过程中占领优势地位。同时,相同地域的同类产品中,特定腐败微生物往往包括一种或几种[7]。通过对特定腐败微生物的生长趋势进行分析就可以预测该产品的货架期。郭全友等[38]基于大黄鱼腐败指数,对冷藏条件下大黄鱼的货架期进行分析。结果发现,0、5和10℃条件下冷藏大黄鱼的货架期为别为17.8±2.5、9.3±1.1和5.4±1.3d,在此条件下相对误差为-6.1%-4.6%,可以有效快速的预测冷藏条件下大黄鱼的货架期。许钟等[39]运用Gompertz方程构建波动温度条件下罗非鱼的货架期,相对误差为-9.1%~5.9%,这都有效地评价了产品在特定条件下的货架期。食品腐败微生物预测模型的构建大大增加了产品货架预测的可信度,有利于产品质量的控制与监测,同时对产品开发过程中的工艺参数改良也起到一定的指导作用。然而食品腐败微生物预测模型仍存在一定的问题。例如,目前对特定腐败菌的预测模型及其相关研究对是针对嗜冷菌和中温菌,货架期模型也只限于鱼类产品,不适于更多产品的推广。另外,模型的构建对实验数据从量到质都存在依赖。试验中,对特定腐败微生物感官拒绝点的控制较为主观,这也使得对特定腐败微生物的腐败能力的界定存在不确定因素。加之试验繁琐,工作量大,而且大量数据仅以普通培养基获得,这就可能造成微生物的真实生长数据出现偏差,使得货架期的预测出现滞后性。这些问题都是今后食品腐败微生物预测模型急需解决的。

2食品致病微生物预测模型在食品工业的应用

良好操作规范(GMP)及危害分析与关键控制点(HACCP)条款中明确规定食品加工过程中的可能产生的危害及其控制方法或限量实施,从而确保食品质量安全。食品致病微生物预测模型的构建对食品风险分析及食品质量安全管理发挥重要作用[40]。通过分析食品致病微生物在不同条件下的生长、存活及消亡变化,估计出食品致病微生物的暴露水平及浓度水平,从而对致病微生物的食品中的分布及风险进行定量分析,进而得出食品的安全评价。赵瑞兰对肉冷却过程中的大肠杆菌的数目控制进行报道[41]。根据报道中预测模型计算,原料肉必须冷却到7℃,且大肠杆菌的对数值要低于log1.5时不会造成危害。同时,FAO和WHO在2002年对鸡肉及鸡蛋中的沙门氏菌进行了风险评估[41]。通过对不同条件下沙门氏菌的暴露评估及随机指标的推断,将数据输入相关的预测模型,得出反应模型的风险预测值,从而降低鸡肉引起的疾病风险。食品致病微生物预测模型的构建可以准确的评估加工过程对食品安全的影响程度,从而制定相应的HACCP体系管理标准;也可以为病原菌在食品中的分布及消费者的摄入量做出风险描述,从而对食品安全性进行定量评价。然而,目前的食品致病微生物预测模型只含盖了特定操作条件下的模型,未将整个食品过程进行模拟,这就无法了解甚至解决食品安全问题。另外,目前的加工手段无法保证产品质量的均一性,这就造成微弱的灭菌效果容易使食品存在安全隐患,从而影响食品致病微生物预测模型的准确与发展。

初中物理中的模型法第8篇

一、控制变量法

物理学中对于多因素(多变量)的问题,常常采用控制因素(变量)的方法,把多因素的问题变成多个单因素的问题。每一次只改变其中的某一个因素,而控制其余几个因素不变,从而研究被改变的这个因素对事物的影响,分别加以研究,最后再综合解决,这种方法叫控制变量法。它是科学探究中的重要思想方法,广泛地运用在各种科学探索和科学实验研究之中。

在初中常见实例如:探究琴弦发声的音调与弦粗细、松紧、长短的关系等;探究影响力的作用效果的因素;探究滑动摩擦力与哪些因素有关;探究二力平衡的条件;探究压力的作用效果与哪些因素有关;探究液体内部的压强与哪些因素有关;探究浮力的大小与哪些因素有关;探究动能(或重力势能)与哪些因素有关等;探究影响液体蒸发快慢的因素;探究物体吸热与物质种类、质量、温度变化的关系等;探究影响电阻大小的因素;探究电流与电压、电阻的关系;探究影响电流做功多少的因素;探究影响电流的热效应的因素;探究电磁铁的磁性与哪些因素有关;探究影响感应电流方向的因素;探究通电导体在磁场中受力的方向与电流的方向、磁感线的方向的关系等。

二、转换法

物理学中对于一些看不见摸不着的现象或不易直接测量的物理量,通常用一些非常直观的现象去认识或用易测量的物理量间接测量,这种研究问题的方法叫转换法。所谓“转换法”,主要是指在保证效果相同的前提下,将不可见、不易见的现象转换成可见、易见的现象;将陌生、复杂的问题转换成熟悉、简单的问题;将难以测量或测准的物理量转换为能够测量或测准的物理量的方法。初中物理在研究概念规律和实验中多处应用了这种方法。

在初中常见实例如:可以通过敲动音叉所引起的乒乓球的弹开来说明发声体在振动;影子的形成可以证明光沿直线传播;月食现象可证明月亮不是光源;物体发生形变或运动状态改变可证明此物体受到力的作用;在测量滑动摩擦力时转换成测拉力的大小;通过小桌陷入沙坑的深浅来比较压力的作用效果;马德堡半球实验可证明大气压的存在;运动的物体能对外做功可证明它具有能;研究影响动能大小的因素时,物体动能的大小无法直接测量和比较,通过比较物体滚到斜面底端对其它物体做的功的多少,间接比较动能的大小;扩散现象可证明分子做无规则运动;铅块实验可证明分子间存在着引力;雾的出现可以证明空气中含有水蒸气;用加热时间长短来显示吸收热量的多少;研究电流时通过电流的热效应和磁效应去研究;研究磁场时用放在磁场中的磁体会受到力的作用去研究;指南针能指南北可证明地磁场的存在;可以通过电磁铁吸引铁钉的多少来显示电磁铁的磁性强弱等。

测量仪器:秒表、电流表、电压表、电阻表、弹簧测力计、气压计、微小压强计、温度计、托盘天平、电能表、测电笔等都是转换法的体现。

三、等效替代法

等效替代法是在保证某种效果(特性和关系)相同的前提下,将实际的、复杂的物理问题和物理过程转化为等效的、简单的、易于研究的物理问题和物理过程来研究和处理的方法。

在初中常见实例如:把不易分析的复杂电路简化为简单的等效电路;研究串、并联电路电阻的关系时引入总电阻(等效电阻)的概念;研究同一直线上二力的关系时引入合力;在研究平面镜成像实验中,用两根完全相同的蜡烛,用未点燃的蜡烛等效替代另一根点燃的蜡烛的像,用玻璃板等效替代平面镜等。

四、建立模型法

即将抽象的物理现象用简单易懂的具体模型表示。在初中常见实例如:研究运动时建立匀速直线运动的模型;研究液体压强时用液柱模型;研究连通器原理时用液片模型;用简单的线条代表杠杆;研究光现象时用到光线模型;研究磁现象时用到磁感线模型;电路图是实物电路的模型;研究肉眼观察不到的原子结构时建立原子核式结构模型等。

五、类比法

在认识一些物理概念时,我们常将它与生活中熟悉且有共同特点的现象进行类比,以帮助我们理解它。在初中常见实例如:内能与机械能类比;用弹簧连接的小球类比存在着相互作用力的分子;在研究电流时,用水流进行类比;认识电压时,用水压进行类比;用抽水机类比电源;原子结构与太阳系;水波和电磁波等。

六、理想实验法

理想实验法是在实验基础上经过概括、抽象、推理得出规律的一种研究问题的方法。

在初中常见实例如:伽利略斜面实验;推导出声音不能在真空中传播;推导出牛顿第一定律;推导出电荷的种类等。

七、比值定义法:

比值定义法就是用两个基本的物理量的“比”来定义一个新的物理量的方法。

在初中常见实例如:速度、密度、压强、功率、比热容、热值、电流等概念公式采取的都是这样的方法。

八、积累法

在测量微小量的时候,我们常常将微小的量积累成一个比较大的量。

在初中常见实例如:测量一枚大头针的质量;测量出一张邮票的质量;测量出心跳一下的时间;测量出导线的直径等。

九、比较法

比较法是通过对不同的物理概念、定义或事物进行比较,发现它们之间的内在联系和根本区别,找出研究对象的相同点和不同点,从而进一步揭示事物的本质属性,它是认识事物的一种基本方法。

在初中常见实例如:比较惯性和惯性定律的区别;比较蒸发和沸腾的特征;比较汽油机和柴油机的结构和工作原理;比较发电机和电动机的结构、原理、能量转化;比较电压表和电流表的使用规则等。

十、归纳法

归纳法是从个别性知识,引出一般性知识的推理,是由已知真的前提,引出可能真的结论。

在初中常见实例如:在日常生活中了解到各种声音都是由于物体振动产生的,从而归纳出:一切发声体都在振动的结论;通过铜、铁、铝、银等金属能导电归纳出金属都能导电等。

十一、图象法