发表之家网站,学术咨询:400-888-7501 订阅咨询:400-888-7502 股权代码 102064

基于肤色分割与深度学习的手势识别

作者:杨洋; 郑紫微; 孙兹昂; 郝骏 宁波大学通信技术研究所; 浙江宁波315211
肤色模型   卷积神经网络   手势识别   准确率  

摘要:手势识别在非语言交流和人机交互中有着十分重要作用,为了实现手势识别的准确率与鲁棒性。本文提出用YCbCr色彩空间检测肤色对输入的图像分割出感兴趣的手势区域,然后再通过深度学习的方法训练出手势识别的模型。该方法针对五种特定手(stop、ok、punch、yes、good)进行自动手势识别。使用Kears框架实现卷积神经网络。通过实验证明,该方法对输入的五种手势识别准确率达到94.6%,并且具有一定的鲁棒性。

注:因版权方要求,不能公开全文,如需全文,请咨询杂志社

杂志投稿 免费咨询 杂志订阅
在线投稿 发表咨询 加急见刊 杂志订阅 返回首页