首页 优秀范文 电气控制系统设计论文

电气控制系统设计论文赏析八篇

时间:2023-02-14 12:18:28

电气控制系统设计论文

电气控制系统设计论文第1篇

【关键词】数控机床;电气控制系统;设计

数控机床电气控制系统能够实现机械制造加工过程参数的自动化控制,而数控机床电气控制系统的设计是更好实现机械制造加工过程参数控制的重要工作。随着现代社会科学技术的逐渐发展,工业生产过程也逐渐趋于自动化与智能化,机械制造行业作为当前社会加工制造行业中十分重要的组成部分,机械制造加工过程的自动化对于当前我国工业自动化水平的提升具有十分积极的作用,因此,积极探究数控机床电气控制系统设计的重要意义以及数控机床电气控制系统设计的过程具有十分重要的意义。

1.数控机床电气控制系统发展的重要性分析

电气控制系统是数控机床工作的核心,随着现代社会工业水平的逐渐发展,数控机床电气控制系统设计的重要性越来越凸显,但是,目前,我国数控机床电气控制系统设计思路以及技术都还相对落后,而国际上数控机床电气控制系统设计过程中先进的技术以及先进的理念都被严格的保密,这对于我国数控机床电气控制系统设计水平的提升十分不利。随着当前社会科学技术的逐渐发展,社会生产活动中所需要的机械设备性能越来越复杂,机械生产的精确度要求越来越高,数控机床电气控制系统设计的水平是机械制造工艺技术水平提升的重要前提与基础,因此,在当前社会对于机械制造行业要求逐渐提升的社会与科技形势之下,积极探究数控机床电气控制系统设计水平提升的途径以及有效措施对于我国工业水平的进一步提升十分重要。

2.数控机床电气控制系统设计过程分析

2.1 数控机床电气控制系统的硬件设计

数控机床电气控制系统硬件设计主要分为监控电路设计、急停保护电路设计、电源电路设计、交流进给传动电路设计、交流主传动电流设计五个方面。

数控机床运行过程中存在一定的风险性,为了保证操作与生产人员的人身安全,监控电路与急停保护电路的设计是必要的工作。监控与急停保护电路设计的主要作用是检测机床的压力,在数控机床监测数据异常的情况下紧急终止运行。监控与急停保护电路能够实现对数控机床运行中全部数据的准确监控,当数控机床运行过程部分参数异常时,其还能够实现自动化判断,分析数控机床能否正常运行,若数控机床参数异常不能够正常运行,则监控与急停保护电路会及时发出警报,从而保证数控机床运行过程的安全性与稳定性。

数控机床运行的核心就是电源电路的设计。数控机床电源电路的设计过程需要严格遵循数控机床电气控制系统设计参数的相关标准,并结合数控机床的实际生产要求以及生产性能对电源电路进行合理的设计与安装。数控机床电源电路设计中最重要的两个问题就是伺服驱动模块的设计以及电压的设置。数控机床伺服驱动模块一般需要安装220V的伺服变压器,并且需要科学的设置伺服驱动模块与风机。数控机床电气系统中不同的模块,其需要的工作电压也是不相同的。数控机床电气控制系统中各模块工作电压的科学设置十分重要。数控机床硬件系统中接触器一般由110V的控制变压器供电,而数控机床电气箱冷却机以及电机一般由220V 电路供电。数控机床电源电路中,根据不同模块工作电压的需求需要设置不同的供电电压,否则,数控机床则不能正常运行。

交流进给传动电路的设计中最重要的就是指标参数精准度的控制。交流进给传动电路是数控机床运行过程中切削工作直角坐标中心定位的依据,交流进给传动电路设计过程中,对于数控机床控制指标精准度的提升可以大大提升数控机床进行机械制造生产的精确度,提高机械仪器设备生产的质量。交流进给传动电路为了实现对数控机床操作速度以及操作位置的准确控制采用了半闭环控制设计,且同时,通过副直联驱动对数控机床滚珠丝杠与伺服电机连接,大大提升了交流进给传动电路运行的准确性以及可靠性。

交流主传动电路的设计标准是数控机床运行的高效性与稳定性。数控机床运行效率的主要影响因素就是数控机床刀具操作过程的效率,刀具操作效率越高,数控机床运行效率也就越多高。而数控机床刀具操作的效率有受到转矩与轴功率的影响,因此,在交流主传动电路设计过程中,需要根据数控机床的生产能力设置科学合理的刀具操作参数,保证刀具自动装卸工作的高效进行,提升刀具操作的效率。

2.2 数控机床电气控制系统的软件部分设计

数控机床电气控制系统软件部分设计的主要内容有两部分,分别是参数的设置以及PLC程序的设置。数控机床的正常运行主要是通过PLC设置参数并执行机械加工的。PLC 是能够进行自由编程的控制器,其可以根据数控机床的功能以及结构设置数控机床进行机械生产加工过程的相应参数。在数控机床电气控制系统中,PLC能够根据电气控制系统的实际工作需要以及工作内容对电气控制系统的驱动参数以及工作参数进行相应的设置以及调整,从而实现电气控制系统的正常功能与操作。PLC程序的设计是数控机床电气控制系统设计中最重要的工作。PLC 程序分为低级程序与高级程序两部分,电气控制系统划分不同的模块,并根据各模块作用以及功能的不同选择相应的程序操作,高级程序与低级程序协同操作实现PLC程序对数控机床控制系统的准确控制。

结束语:

数控机床电气控制系统设计效果的提升对于机械制造生产行业的发展具有决定性的作用,因此,积极分析数控机床电气控制系统设计的重要性以及提升途径,对于机械制造行业的发展十分重要。

参考文献:

[1]贾然.分析数控机床的电气控制系统设计――评《电机与电气控制技术及分析方法研究》[J].当代教育科学,2015,(20):封3.

电气控制系统设计论文第2篇

关键词:人工智能 电气 自动化控制

人类智能主要要包括三个力面,即感知能力,思维能力,行为能力,而人工智能是指由人类制造出来的“机器”所表现出来的智能。人工智能主要包括感知能力、思维能力和行为能力。

1.人工智能应用理论分析

人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是门边沿学科,属于自然科学和社会科学的交叉。涉及哲学和认知科学、数学、心理学、计算机科学、控制论、不定性论,其研究范畴为自然语言处理,知识表现,智能搜索,推理,规划,机器学习,知识获取,感知问题,模式识别,逻辑程序设计,软计算,不精确和不确定的管理,人工生命,神经网络,复杂系统,遗传算法等,应用于智能控制,机器人学,语言和图像理解,遗传编程。

当今社会,计算机技术已经渗透到生产和生活的方方面面,计算机编程技术的日新月异催生自动化生产、运输、传播的快速发展。人脑是最精密的机器,编程也不过是简单的模仿人脑的收集、分析、交换、处理、回馈,所以模仿模拟人脑的机能将是实现自动化的主要途径。电气自动化控制是增强生产、流通、交换、分配等关键一环,实现自动化,就等于减少了人力资本投入,并提高了运作的效率。

2.人工智能控制器的优势

不同的人工智能控制通常用完全不同的方法去讨论。但AI控制器例如:神经、模糊、模糊神经以及遗传算法都可看成一类非线性函数近似器。这样的分类就能得到较好的总体理解,也有利于控制策略的统一开发。这些AI函数近似器比常规的函数估计器具有更多的优势,这些优势如下

(1)它们的设计不需要控制对象的模型(在许多场合,很难得到实际控制对象的精确动态方程,实际控制对象的模型在控制器设计时往往有很多不确实性因素。例如:参数变化,非线性时,往往不知道。)

(2)通过适当调整(根据响应时间、下降时间、鲁棒性能等)它们能提高性能。例如:模糊逻辑控制器的上升时间比最优PID控制器快1.5倍,下降时间快3.5倍。

(3)它们比古典控制器的调节容易。

(4)在没有必须专家知识时,通过响应数据也能设计它们。

(5)运用语言和响应信息可能设计它们。论文格式,自动化控制。

(6)它们有相当好的一致性(当使用一些新的未知输入数据就能得到好的估计),与驱动器的特性无关。论文格式,自动化控制。。现在没有使用人工智能的控制算法对特定对象控制效果非常好,但对其他控制对象效果就不会一致性地好,因此对具体对象必须具体设计。

3.人工智能的应用现状

(1)优化设计电气设备的设计是一项复杂的工作,它不仅要应用电路、电磁场、电机电器等学科的知识,还要大量运用设计中的经验性知识。传统的产品设计是采用简单的实验手段和根据经验用手工的方式进行的。因此,很难获得最优方案。随着计算机技术的发展,电气产品的设计从手工逐渐转向计算机辅助设计(CAD),大大缩短了产品开发周期。人工智能的引进,使传统的CAD技术如虎添翼,产品设计的效率及质量得到全面提高。

用于优化设计的人工智能技术主要有遗传算法和专家系统。遗传算法是一种比较先进的优化算法,非常适合于产品优化设计,因此电气产品人工智能优化设计大部分采用此种方法或其改进方法。

(2)智能控制的功能实现

①数据采集与处理:对所有开关量、模拟量的实时采集,并能按要求处理或存贮。

②画面显示:模拟画面真实显示一次设备和系统的运行状态,可实时显示电流、电压等所有模拟量、计算量、隔离开关、断路器等实际开关状态及挂牌检修功能,能生成历史趋势图。

③运行监视:具有对各主要设备的模拟量数值、开关量状态的实时智能监视,有事故报警越限和状态变化事件报警,事件顺序记录、声光、语音、电话图象报警。

④操作控制:通过键盘或鼠标实现对断路器及电动隔离开关的控制,励磁电流的调整。按顺控程序进行同期并网带负荷或停机操作。系统对运行人员的操作权限加以限制,以适应各级运行值班管理。

⑤故障录波:模拟量故障录波,波形捕捉,开关量变位,顺序记录等(包括主要辅机)。论文格式,自动化控制。。

⑥在线分析:不对称运行分析、负序量计算等。

⑦在线参数设定及修改:保护定值包括软压板的投退。

⑧运行管理:操作票专家系统,运行日志,报表的生成及存储或打印,运行曲线等。

人工智能控制技术在自动控制领域的研究与应用已广泛展开,但在电气设备控制领域所见报道不多。可用于控制的人工智能方法主要有3种:模糊控制、神经网络控制、专家系统控制。

4.恒压供水案例简析

恒压供水在工业和民用供水系统中已普遍使用,由于系统的负荷变化的不确定性,采用传统的PID算法实现压力控制的动态特性指标很难收到理想的效果。在恒压供水自动化控制系统的设计初期曾采用多种进口的调节器,系统的动态特性指标总是不稳定,通过实际应用中的对比发现,应用模糊控制理论形成的控制方案在恒压系统中有较好的效果。在实施过程中选用了AI 一808人工智能调节器作为主控制器,结合FXIN PLC逻辑控制功能很好地实现了水厂的全自动化恒压供水。对于单独采用PLC实现压力和逻辑控制方案,由于PLC的运算能力不足编写一个完善的模糊控制算法比较困难,而且参数的调整也比较麻烦,所以所提出的方案具有较高的性价比。

本案例中只是一个人工智能在电气自动化中的一个小小的应用,也是电气元

件生产供给的一个方向,实现机械智能化是我们努力的追求,将人工智能的先进的最新成果应用于电气自动化控制的实践是一个诱人的课题。

人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能完成的复杂的工作,电气自动化是研究与电气工程有关的系统运行。人工智能主要包括感知能力、思维能力和行为能力,人工智能的应用体现在问题求解,逻辑推理与定理证明,自然语言理解,自动程序设计,专家系统,机器人学等方面。而这诸多方面都体现了一个自动化的特征,表达了一个共同的主题,即提高机械的人类意识能力,强化控制自动化。因此人工智能在电气自动化领域将会大有作为,电气自动化控制也需要人工智能的参与。

参考文献:

电气控制系统设计论文第3篇

关键词:电气自动化电气工程应用

中图分类号:F407文献标识码: A

前言:随着我国经济的发展,电气工程的发展水平越来越高,特别是电气自动化技术,通过不断创新与实践,我国已大大提高了电气工程自动化的程度。电气工程通过把自动化技术和电子通信、网络信息等技术结合在一起的方式,强化了自动化水平,还能降低资金的投入,提高人们生活水平,具有十分重要的意义。

一、电气自动化概述

电气自动化主要是以电力电子、计算机、网络等技术为手段,涵盖系统分析和管理等方面研究领域的一门综合性科学。电气自动化的基础是控制理论和电力网理论,其中控制理论具体是探究如何利用信号反馈来对动态系统的性能和行为进行改正,从而实现预期的控制目标。控制理论在不断发展中现已比较完善,并且在诸多科学领域当中都有所渗透,如数学、通讯技术、自动化技术、电子计算机等等。控制理论与电力网理论这两者的有机结合就是电气自动化的基础,在这一基础之上,能够使电力工程的工作效率大幅提高,并且还可以节约资源和实践,同时还能使生产技术获得进一步完善,有助于提高运行质量。

二、电气自动化构成、设计原则

1、电气自动化构成

电气自动化包括两部分,一部分为电气自动化系统,另一部分为微型计算机导入后,将电气自动化系统分成信号接收、处理及输出的部分,实现自动化系统自动记录与分析,提供反馈,判断误差。

2、电气自动化设计原则

设计要满足产品与工艺自动化的要求,这是设计总原则。设计时要处理好机械和电气间的关系,这是设计目标。设计时要选择合适电子设备,保证自动化设计美观,保证操作简单与安全。电气自动化优势、特点和应用现状电气自动化将电子、计算机与网络技术当作手段,包括系统分析与管理的研究内容,而电气自动化基础需要控制理论与电力网理论,而控制理论是研究利用信号的反馈实现动态系统性能与行为的改正,最终实现预期目标。控制理论已经逐渐完善,还渗透到了很多科学领域中,控制理论和电力网理论是电气自动化基础,只有保证这一

基础,才能使电力工程工作效率得到提高,实现节约资源,开展实践工作,完善生产技术,提高运行的质量。

3、电气自动化特点

电气自动化系统的设置,大部分是把电气设备安装于电动机或者配电室内,电气自动化系统配件较多,而且处理信息量很大,如果发生技术的问题,很难开展维修工作。和传统热工体系比较,电气自动化系统的操作和控制,一般控制的频率较低,而且系统在正常运行时,可以间隔较长时间进行操作指令的。电气设备处于系统保护状态下要求十分高,系统的运行、操作的速率也较快。在电气自动化系统构造角度分析,电气设备操作复杂,具有一定难度,不过,具有较强的逻辑规律。可以引进多种电气自动化的监控技术,要从多方面的角度对电气设备的特点进行考虑,进行控制体系构建的过程中,应以严谨态度进行系统结构的布设,尽可能的选择性质有效控制方案,保持电气自动化的控制系统可以安全的,高效的保持运行。

三、电气自动化应用现状

1、融合了IT 技术

随着我国信息技术的发展与完善,信息技术已经广泛应用于各个领域中,特别是电气产品,例如:传感器、控制器及各种仪器仪表等,都应用了信息技术,而计算机网络技术与多媒体技术也广泛应用于电气自动化领域中。

2、结合人工智能目前,我国的人工智能研究工作已经取得了很大的突破和进展,研究成果也广泛应用于电气工程中。尤其是计算机对于电气工程的辅助和应用已逐年增大,在电气自动化和人工智能的结合构建中,一般从三方面出发:第一方面:把人工智能应用在电气工程故障监测与诊断中;第二方面:把人工智能应用在电气工程的产品保护与序列控制中;第三方面:把人工智能应用于电气系统不断优化与完善。

3、应用开放式的平台

应用开放式的平台,对电气自动化系统设计和应用都有十分重要的作用,可有效推动我国电气自动化应用与发展。

第一,采用IEC61131 的标准,可以实现管理程度的优化,还可以提高平台实际应用的效率,减少升级的周期,具有很高的应用价值。应用开放式平台最大优势就是能够实现产品编程接口统一化,可以提高电气自动化系统合格率,保证程序间可靠的通讯。

第二,普遍应用了Windows 的计算机操作系统,而且Windows 的计算机操作系统已经成为我国工业控制标准化的平台,是我国普遍应用的操作系统,系统操作简单,而且维护十分方便,可以促进自动化领域发展。

四、电气自动化技术在电气工程中应用的探究

1、在发电厂发散的监控系统下进行分析

电气工程的发电网,一般是由过程控制完成单元和数据通讯网的网络控制,还有一部分是由分散监控系统来完成的。实际监控工作中,对发电网发散监控系统可以设计分层结构的方式来布置。过程控制的单元是指发电厂发散的监控系统在监控过程中,通过实际运行产生单元,完成过程控制的单元脉冲量和热电阻的相关信号,进行实时的监控,而且,对监测信号也要进行实时的监控与处理,保证发电厂实际生产中更好的控制,实现检测的目标。

2、在变电站角度进行分析

电气自动化技术应用于变电站,主要指电气自动化的控制技术与传输技术及相关应用的信息技术处理,将这些技术结合在一起,就可以完成计算机装置的引入,在变电站实际应用和管理中,形成电气自动化系统。电气自动化系统工作中,需要完成计算机设备的运用,开展智能化操作界面,加快电气工程运行和发展,形成高效性、安全性的生产理念。而且,电气工程中电气自动化系统应用于变电站,主要包括自动监控的设备和简单开关操作的设备及自动测量的装置。变电站的实际工作中,应用电气工程的自动化技术,可以促进电气自动化技术的应用和发展,朝着综合性的方向应用与发展。

3、在电网高度角度进行分析

电气工程中,研究电网高度的自动化可以由电气自动化系统与相关电网高度服务器进行控制,从而得以实现自动化控制。自动化系统的设计中和实际应用过程中,既可以由电网运行经济调度的角度,使电网得到安全的、稳定的运行,还能研究电力生产中相关数据,完成分析与检测工作,使我国电力工程中应用的电力系统,在产生负荷状态下,完成自动预测的功能。电气工程中也可以对比和分

析显示出的相关数据,研究电网系统发生故障的位置,对故障位置做出及时的锁定动作,提高故障排除的速度,实现电气工程高效率应用与发展。

结语:综上所述,我国电气工程应用了电气自动化技术,可以提高我国电气设备自动化的水平,也能提高电力系统安全与稳定的运行,可以提供重要的技术支持与保障,保证电力系统安全性、稳定性。提高我国电力系统的运行质量,减少停电和断电等故障的发生。本文结合了一些电力工程和电气自动化技术的理论知识与笔者的实践工作经验,从电力工程与电气自动化技术的概念出发,研究了电气自动化的优势、特点和应用现状,探究了电气自动化技术在电气工程中的应用,提出了电气工程中电气自动化技术应用的优势。

参考文献:

[1] 赵杨,丁宝峰,杜翠女,赵明.浅谈电气自动化技术在火力发电中的创新与应用[J].科技传播,2012,(5).

[2] 刘效武,刘建平.电气自动化技术在火力发电中的应用[J].中国新技术新产品,2011,(9).

电气控制系统设计论文第4篇

关键词:电气自动化;电脑;整合;运用

电气工程及其自动化涉及电力电子技术,计算机技术,电机电器技术信息与网络控制技术,机电一体化技术等诸多领域,其主要特点是强弱电结合,机电结合,软硬件结合。大到建筑工程电路设计,小到家庭照明设备控制,都离不开电气自动化设计思想和计算机控制技术的结合。

一、电气自动化原理与计算机之间的关系

从电气自动化学科理论上讲,电气自动化技术的基础是对其控制系统的完善设计,主要设计思路集中于监控方式,包括远程监控和现场总线监控。在电气自动化控制系统的设计中,作为系统核心的计算机其主要作用是对所有信息进行动态协调,实现相关数据储存和分析。计算机系统是整个电气自动化系统运行的基础。在实际运行中,计算机主要完成数据的输入与输出数据,并对所有数据进行分析处理。通过计算机快速完成对大量数据的一系列操作从而达到控制系统的目的。在电气自动化系统中,启用方式多种多样,当电气自动化系统功率较小时,可以采用直接启用的方式实现系统运行,而在大功率的电气自动化系统中,要实现系统控制必须采用星 型或者三角形的启用方式。除了以上两种较为常见的控制方式以为,变频调速也作为控制方式在一定范围内应用,从整体上说,无论何种控制方式,其最终目的都是保障生产设备运行的安全稳定。

另外,电气自动化系统是将发电机、变压器组以及厂用电源等不同的电气系统的控制纳入ECS监控范围,形成220kV/500kV的发变组断路器出口,实现对不同设备的操作和开关控制,电气自动化系统在调控系统的同时也能对其保护程序加以控制,包括励磁变压器、发电组和厂高变。其中变组断路器出口用于控制自动化开关,除了自动控制,还支持对系统的手动操作控制。一般集中监控方式不对控制站的防护配置提出过高要求,因此系统设计较为容易,设计方法相对简单,方便操作人员对系统的运行维护。集中监控是将系统中的的各个功能集中到同一处理器,然后对其进行处理,因为内容比较多,处理速度较慢,这就使得系统主机冗余降低、电缆的数量相对增加,在一定程度增加了投资成本,与此同时,长距离电缆容易对计算机引入干扰因素,这对系统安全造成了威胁,影响了整个系统的可靠性。集中监控方式不仅增加了维护量,而且有着复杂化的接线系统,这提高了操作失误的发生几率。

远程控制方式是实现需要管理人员在不同地点通过互联网联通需被控制的计算机。这种监控方式不需要使用长距离电缆,降低了安装费用,节约了投资成本,然而这种方式的可靠性较差,远程控制系统的局限性使得它只能在小范围内适用,无法实现全厂电气自动化系统的整体构建。针对综合型的电气自动化控制系统,一般采用现场总线的方式进行监控,这种监控方式的通讯总线由串行连接的智能设备及自动化系统实现数据的双向传输,具有针对性目标。现场总线监控方式不仅具备远程监控方式的所有优点,而且减少了大量设施(如隔离设备、端子柜和模拟量变送器及、I/O卡件等辅助元件、设备的安装,并可以实现智能设备就地安装,直接连接通信线与监控系统,所需控制电缆的数量大量降低,减少了投资成本,也不需要复杂的安装维护工作,降低了操作人员的工作负荷,运营成本大幅度缩减。因此,在发电厂智能监控等大型电气自动化控制系统中,现场总线监控方式具有广阔的发展前景,同时也是未来自动化控制的研究方向。

二、电气自动化结合计算机技术的应用领域概述

电气自动化和计算机技术的应用领域从广义上讲,还是围绕着“电”和“控制”两个核心关键词。比如发电站高压电的输送、变电站对社区电路的控制、家用电器照明设施以及公共场合自动电梯等,这些都是生活中经常碰到“电”这个关键词的,在“控制方面”,主要涉及到人工智能、建筑设备、生产设备和科技发明几个领域,在此篇幅所限,笔者就不在此一一赘述了,下面主要对二者整合运用的代表性领域:人工智能电气设计领域,进行详细的分析。

人工智能领域除了关注度很高的机器人,与电气结合的服务于社会生产的电力系统,设备控制上应用也是有迹可循。比如电力系统中人工智能的应用:电力系统中人工智能技术相关应用主要集中于启发式搜索、模糊集理论、神经网络、专家系统这四个方面。专家系统作为一个集许多专业知识、经验、规则于一体的综合性程序系统,主要依靠的是某一特定领域相关的专家丰富知识与经验。对其进行具体操作时,要依照新的现实情况来对专家系统中的规则库以及知识库进行及时更新,这样才能适应发展的需求。神经网络则具备了全面的学习形式与完全分布式的基础存储方式,因此它在对大规模信息数据进行处理时加以应用,同时它具备了较强的复杂状态中相关分类能力和识别能力。那么在电力系统内进行短期负荷的预测时,BP神经网络就可以在充足的信息样本中开展对模型的合理分类工作,对输入数据进行分析选择,这样便可以构建出不同季节性的日预测与周预测模型。当然,还有电气控制技术中人工智能的应用:电气自动化的控制技术可以实现强化分配、交换、流通、生产等关键环节,在加大财力投入的同时尽可能减少人力,以便提高电气系统中的运作质量与效率。电气设备控制系统里面人工智能技术的应用包含了神经网络控制、专家系统控制与模糊控制等,而在实际的应用过程中,使用最多的则是模糊控制,这主要是源于其简单化的控制,同时又和现实情况联系密切。

在电气自动化领域,人工智能应用集中体现于专家系统、自动程序设计、定理证明、逻辑推理、各类问题求解等方面,因此,在电气自动化技术中充分挖掘并利用人工智能的功能与效力,这样才能使工作更加顺畅、高效。

三、结语

对于现代社会而言,电气自动化与计算机技术结合产业正朝着高效节能,安全智能的方向发展,也会对未来人们的生活带来更多的方便和快捷。

参考文献:

[1]胡建,米彬彬. 变电站智能五防的设计与实现[J]. 电源技术应用. 2013(04).

电气控制系统设计论文第5篇

关键词 电气自动化;工业生产;应用

中图分类号:TM76 文献标识码:A 文章编号:1671—7597(2013)051-008-01

电气自动化综合了电力、电子、计算机的多种学科,是一门非常重要的学科。众所周知,信息化是社会发展的大趋势,而自动化属于信息化产业,因此电气自动化的发展正是时展的需要。工业电气自动化运用高科技手段,大大提高了生产效率,进一步保证了生产的可靠性,受到了许多行业的欢迎,尤其是得到了高新技术产业的高度重视,使其得到了迅速的发展。下面先来了解一下工业电气自动化的有关内容,然后进一步分析它在工业生产中的应用。

1 工业电气自动化的概括

1)工业电气自动化的概念。电气自动化全称为电气工程及自动化,它是一门新兴的学科,它以控制理论和电子网理论为基础,以电子技术、计算机技术为手段,在工业生产中占据着重要地位。电气自动化技术被广泛的运用到各个领域,而工业电气自动化指的是用于工业生产的电气自动化,它能够降低工业生产的成本,提高生产率,对改善工业生产环境有着重要作用。时代在进步,我们不断走向科技化、信息化及工业化的新时代,工业生产需要紧跟时展,大力发展电气自动化,使其推动经济的不断发展。

2)电气自动化的发展历程。电气自动化从出现到发展再到成熟经受了时间的考验,它的发展历程与计算机技术、电子技术的发展分不开。下面来具体了解一下电气自动化的发展历程。

首先是电气自动化的出现。在20世纪50年代,电机、电力等产品不断涌现,这使得自动化的这一概念出现。继电器、接触器实现了自动化控制,它们的应用使人的意志通过设备操作来实现,这也推动了电气自动化的改革。

其次是电气自动化迅速发展阶段。20世纪60年代,一种新的理论被提出,它就是现代控制理论,这一理论的出现使得电气自动化技术进一步发展。电气自动化的发展离不开计算机技术,伴随着计算机技术在各个行业中的广泛运用,计算机技术的信息处理与自动控制共同服务于生产过程,使得生产进一步被优化管理,自动化技术发生了质的飞跃,进入了一个全新的阶段。20世纪70年代,随着科技的不断发展,通讯、电子等技术都得到了进步,这促使了电气自动化系统的进一步发展,此时现代控制理论得到了推广,大多难题被集中到这一理论范畴。随着问题的不断研究,探索出了新的自动化理论,首先是大型系统控制理论的产生,之后又产生了智能控制理论,这一突破性的研究大大促进了电气自动化的发展。

最后是电气自动化相对成熟时期。20世纪80年代至今,电气自动化的发展有了很大的提高,目前自动化技术的发展已经比较成熟,它成了高新技术产业的主要部分,被广泛的运用到了各个领域。另外,电气自动化的发展也推动了制造技术的进一步发展。

3)影响电气自动化发展的因素。影响电气自动化发展的因素有很多,其中最主要的是信息技术与物理科学的影响,下面分别来了解一下它们对电气自动化的影响。

首先是信息技术对电气自动化的影响。从广义上讲,信息技术是人类对信息开发和使用过程中采用的技术手段,它包括计算机技术及通讯技术。随着科学技术的发展,使得信息技术不断发展,为电气自动化提供了新的手段,电气自动化技术得到了进一步提高。在电气工程中,充分的利用了通信技术,这也是信息技术影响电气自动化的表现。

其次是物理科学对电气自动化的影响。在电气自动化发展过程中,物理科学与之紧密相连,物理科学的运用推动了电气自动化的发展。三极管是一项伟大的发明,它使人类意识和设备操作联系起来,这一发明推动了固体电子学的发展,使物理科学与电气自动化相互关联。电气自动化在今后的发展中,将会与物理科学建立更紧密的联系,进一步拓宽到其它系统中。

4)电气自动化的发展方向。IEC61850的制定使得给不同厂家IED设备信息交流提供了标准,大大促进了自动化系统的发展,电气自动化的广泛应用是时展的必然,在IEC61850标准下,我国进一步研发了电气自动化系统产品,并且有所进步。与国际接轨,应用国际标准是电气自动化的发展方向。

2 工业电气自动化的应用

计算机技术在企业管理中得到了广泛的运用,Windows已经成为了工业控制的标准平台。基于PC的控制系统受到了广大行业的好评,它不仅具有灵活性,而且具有易于集成的特点,维护起来相当方便。自从可编程控制器的国际标准IEC 61131制定后,使得编程接口更加标准化,各大PLC厂商都依照这一规范,推出的许多产品都能够符合该标准的要求。其中,PC控制软件也有许多是按照该标准开发的。在工业领域,电气自动化受到了高度重视,现在我们来具体了解一下现场总线及先进控制在生产中的应用。

1)现场总线指的是连接智能现场设备和自动化系统的通信系统,主要解决系统之间信息传递的有关问题,它的出现给工业领域增添了新的活力,对工业生产有重要意义,它被广泛的运用到了各个领域。与其它控制系统相比,现场总线控制系统具有全数字化、开放性、互用性、智能化等特点,成为工业生产自动化的方向。现场总线控制系统能够有效的节约企业成本,现场总线的设置相对简单,使用的设备较少,节约了设备投资费用。除此之外,它可以减少后期电缆的使用,同时也节约了相关的施工费用,对企业实现经济效益有重要意义。目前来说,现场总线控制系统发展尚未成熟,它与分散控制系统共同存在于工业生产中。

2)先进控制具有很好的控制效果,在工业生产过程中,建立数学模型并非易事,运用预估控制技术后,会使数学模型的要求降低。先进控制技术既可以进行模型预测,又可以进行推断控制,另外,先进控制还可以处理较为复杂的多变量。先进控制是通过计算机技术来实现的,通过计算机来实现数据处理、数据传输、模型辨识等功能,计算机技术就是先进控制的发展平台。智能化是先进控制的发展趋势,生产过程需要智能系统来完成,智能系统可以用来进行故障诊断、监督等工作。

3 总结

随着电气自动化的不断发展,它已经成为高新技术产业的主要部分,大大推动了国民经济经济的发展。在几十年的发展历程中,电气自动化从无到有,从开始到成熟,它不仅与信息技术紧密相连,而且受到了物理科学的极大影响。电气自动化不断发展,它在工业生产中得到了广泛的应用,为工业生产带来了很大的方便。

参考文献

[1]李秀梅.在工业电气自动化中数字技术的应用及创新[J].价值工程,2013(08).

电气控制系统设计论文第6篇

关键词:电子工程;自动化控制;智能技术;应用

一、人工智能应用概述

十九世纪中期人工智能技术由国外知名科学家提出,随着时代不断的发展,人工智能技术也随之不断发展,由一开始简单的加减法计算器转变为正式的计算机系统。人工智能技术作为一门综合性的学科,其中包括计算机科学、心理学、控制论、信息论、哲学等科学知识,经过长期发展与研究,现阶段人工智能技术通过模拟人脑思维活动,来代替人们完成生产、生活,人工智能几乎与人脑没有区别。人工智能理论是在丰富的人工智能经验下总结出的知识,主要分析了模拟人脑的科学理论及其发展趋向,人工智能技术属于计算机科学中的一部分,同样也是人工智能系统的基础,为生产出与人脑思维模式相同的人工机器,使其取代人的工作,经过大量研究人员的辛勤研究,当前人们的生活与计算机技术已牢不可分。计算机技术可通过编程来模拟人脑活动,例如收集、处理、分析、交换信息等,编程技术极大的促进了智能化系统的发展,在生产活动中发挥了巨大的优势,将智能技术运用在电气工程自动化中,生产效率与效益得到提高。通过对电气工程系统生产中各个环节进行优化和控制,节省了生产时间、成本、人力,智能化控制实现了自动化的电气工程。

二、人工智能控制的优点

人工智能技术控制系统是一个比较复杂的过程,与以往的线性函数控制器不同,人工智能技术采用遗传算法、模糊神经网络系统,使用非线性函数控制器,便于对系统各部件的了解,从而实现了对系统控制策略的研究与分析。一般的函数控制器无法对系统各部件进行动态的了解和分析,而人工智能技术的优势正是在此,可对系统各部件动态进行全方位的了解与掌握,有助于控制和管理系统的运行。一般的系统控制器通过收集控制对象的动态参数,建立与之相应的模型,尽量减少或规避不稳定因素,例如参数起落较大、非线性信息的变化等,人工智能技术则不用建立控制对象的模型,而是依据下降时间、响应时间,来及时调整系统,使其性能得到提高。人工智能技术运用模糊控制与逻辑控制来调节下降时间,与一般的控制器相比要好上四倍,和最好的PID控制器相比还要好两倍。

人工智能控制器与以往的控制器进行对比,会发现人工智能控制器不仅易于调节,其操作也更便捷,即使在无人操作的情况下,人工智能系统仍能自动生成信息数据、语言来完成设计。并且人工智能控制器干扰较少,几乎不受驱动器的干扰自动运作,任意输入信息人工智能系统都能计算出来。面对不同的控制对象时,一般控制器可使用,人工智能控制器使用效果不错,一般控制器不能使用,人工智能控制器也能保证使用效果的良好,根据设计情况来判断选择适合的控制器。人工智能系统在进行模糊化与反模糊化时可确定和适应隶属函数、规则库、模糊神经控制器等,其应用方法还需要进行更多的研究。

三、智能技术在电子工程自动化控制中的应用

随着时代的发展,互联网技术在各行各业落地生根,而人工智能技术也随之大力发展,现阶段将人工智能技术与电气工程自动化控制联系在一起,有助于处理和诊断故障,提高生产效率和工作效率,节省了生产成本与时间,实现企业最佳经济效益。因此,要注重研究人工智能技术是如何对机械故障进行判断和检测、怎样实现优化设计电气产品、控制与保护电子工程生产等问题。

电气机械设计是电子工程生产中的重中之重,由于其设计十分复杂,设计人员既要具备丰富的基础知识,也要拥有精湛的操作技术水平,最好还能灵活运用理论知识。在以往设计电子产品的时候,大多是根据自身经验与试验来进行设计,以人工操作的形式来展开设计方案,这样无法保证设计出的电子产品是否实用。

目前将电子产品设计与计算机技术联系在一起,改变了传统的设计方式,在计算机的帮助下设计电子产品,能够及时对产品进行检测和试验,不但提高了生产效率,也减少了预定的开发产品时间。人工智能化技术使得CAD技术也得到发展,通过遗传算法与专家系统的应用,优化了电气产品设计,遗传算法是一种新兴的计算方法,在计算大量数据时也能保证计算精度高,在电气产品生产与设计环节较多应用,这也证明了遗传算法在电子工程生产中有着重要的作用。电子产品故障具有非线性、不稳定性的特点,其故障间必然存在某种密切的关联,并且此种关联与故障有着内在的联系,这时可采用专家系统来诊断电气故障。智能化技术的应用方法包括神经网络系统、模糊逻辑系统、专家系统等,变压器是整个电力系统中的关键内容之一,其故障诊断是根据判断变压器中分解油的气体,来找出故障位置与原因。

在电力系统自动化中应用可编程逻辑控制器,对工序和开关进行控制,在一些大型的电力企业当中,基本由可编程逻辑控制器取代了继电控制器,直接对生产过程中任一工序进行控制,还可调整总体系统,保证电子产品的顺利生产。一般电力企业的输煤系统由多个部分组成,例如卸煤、上煤、储煤、配煤等,电力系统的主站区、现场传感器、远程站点共同构成一个整体的输煤控制系统,便于对输煤环节进行控制。主站区由人机接口与可编程逻辑控制器构成,设立在集控室内,主要依靠自动控制系统,技术人员通过监视器,对现场控制系统进行控制。可编程逻辑控制器的应用取代了软继电器,不但提高了生产效率,电力系统也变得稳定、可靠,供电系统也可由智能控制,使其具备自动切换的功能,电能也变得更加安全可靠。

四、结束语

综上所述,人工智能技术是一种新型的科学技术,具有自动化、数字化、智能化的特点,在电气工程自动化控制中应用人工智能化技术,能够发挥出智能化技术的最大优势,优化了电子产品设计,促进了电气工程生产的自动化控制。

参考文献:

[1]沈医卫.浅谈电子工程自动化控制中的智能技术[J].机电信息,2013(36)

[2]杨振兴.电气工程自动化控制中智能技术的应用研究[J].科技传播,2013(7)

[3]娅.智能化技术在电气工程自动化控制中的应用[J].科技致富向导,2012(27)

电气控制系统设计论文第7篇

关键词:电气自动化;科技;设计思想;将来发展

中图分类号:A715 文献标识码:A 文章编号:

1 前言

文章经过论述电气综合自动化体系的性能,讲述了当下电气自动化掌控体系的规划理念(以发电厂为例子),展望了将来电气自动化掌控体系的发展态势。设备智能化水准的提升促使对现场设备情况的精确掌控变为可能,通讯科技的发展则为大容量的数据传输提供了平台。在工业自动化领域,基于Pc的控制系统以其灵活性和易于集成的特点正在被更多的采纳。

2 电气自动化控制系统的设计理念

2.1集中监控方式

这种监控办法优势是运营维护比较便捷,掌控站的防护准求不高,系统规划比较简单。但是因为集中式的主要特征是将系统的各个功能集中到一个处理器进行处理,处理器的任务相当繁重,处理速度受到影响。由于电气设备全部进入监控,伴随着监控对象的大量增加随之而来的是主机冗余的下降、电缆数量增加,投资加大,长距离电缆引入的干扰也可能影响系统的可靠性。同时,?隔离刀闸的操作闭锁和断路器的联锁采用硬接线,由于隔离刀闸的辅助接点经常不到位,造成设备无法操作。这种接线的二次接线复杂,查线不方便,大大增加了维护量,还存在由于查线或传动过程中由于接线复杂而造成误操作的可能性。

2.2远程监控方式

远程监控方式具有节约大量电缆、节省安装费用、节约材料、可靠性高、组态灵活等优点。由于各种现场总线(如Lonworks总线,CAN总线等)的通讯速度不是很高,而电厂电气部分通讯量相对又比较大,所有这种方式适合于小系统监控,而不适应于全厂的电气自动化系统的构建。

2.3现场总线监控方式

目前,对于以太网(Ethernet)、现场总线等计算机网络科技已经普遍应用于变电站综合自动化系统中,且已经积累了丰富的运行经验,智能化电气设备也有了较快的发展,这些都为网络控制系统应用于发电厂电气系统奠定了良好的基础。现场总线监控方式使系统设计更加有针对性,对于不同的间隔可以有不同的功能,这样可以根据间隔的情况进行设计。采用这种监控方式除了具有远程监控方式的全部优点外,还可以减少大量的隔离设备、端子柜、I/0卡件、模拟量变送器等,而且智能设备就地安装,与监控系统通过通信线连接,可以节省大量控制电缆,节约很多投资和安装维护工作量,从而降低成本。另外,各装置的功能相对独立,装置之间仅通过网络连接,网络组态灵活,使整个系统的可靠性大大提高,任一装置故障仅影响相应的元件,不会导致系统瘫痪。因此现场总线监控方式是今后发电厂计算机监控系统的发展方向。

3 探讨电气自动化控制系统的发展趋势

3.1 OPC(OIJEforProcessControl)科技

OPC(OIJEforProcessControl)科技的出现,IEC61131的颁布,以及Microsoft的Windows平台的广泛应用,使得未来的电气科技的结合,计算机日益发挥着不可替代的作用。IEC61131已成为了一个国际化的标准,正被各大控制系统厂商广泛采纳。Pc客户机/服务器体系结构、以太网和Internet科技引发了电气自动化的一次又一次革命。正是市场的需求驱动着自动化和IT平台的融和,电子商务的普及将加速着这一过程。Internet/Intranet科技和多媒体科技在自动化领域有着广泛的应用前景。企业的管理层利用标准的浏览器可以存取企业的财务、人事等管理数据,也可以对当前生产过程的动态画面进行监控,在第一时间了解最全面和准确的生产信息。虚拟现实科技和视频处理科技的应用,将对未来的自动化产品,如人机界面和设备维护系统的设计产生直接的影响。相对应的软件结构、通讯能力及易于使用和统一的组态环境变得重要了。软件的重要性在不断提高。这种趋势正从单一的设备转向集成的系统。

3.2 变换器电路从低频向高频方向发展

随着电力电子器件的更新,由它组成的变换器电路也必然要换代。应用普通晶闸管时,直流传功的变换器主要是相控整流,而交流变频船动则是交一直一交变频器。当电力电子器件进入第二代后,更多是采用PWM 变换器了。采用PWM方式后,提高了功率因数,减少了高次谐波对电冈的影响,解决了电动机在低频区的转矩脉动问题。

但是PWM 逆变器中的电压、电流的谐波分量产生的转矩脉动作用在定转子上,使电机绕组产生振动而发出噪声。为了解决这个问题,一种方法是提高开关频率,使之超过人耳能感受的范围,但是电力电子器件在高电 压大电流的情况下导通或关断,开关损耗很大。开关损耗的存在限制了逆变器工作频率的提高。 1986 年美国威斯康星大学 Divan 教授提出谐振式直流环逆变器。传统的逆变器是挂在稳定的直流母线上,电力电子器件是在高电压下进行转换的‘硬开关’,其开关损耗较大,限制了开关在频率上的提高。而谐夺式直流环逆变器是把逆变器挂在高频振荡

过零的谐振路上,使电力电子器件在零电压或零电流下转换,即工作在所谓的‘软开关’状态下,从而使开关损耗降低到零。这样,可以使逆器尺寸减少,降低成本,还可能在较高功率上使逆变器集成化。因此,谐振式直流逆变器电路极有发展前途。

3.3 交流调速控制理论日渐成熟

1971年,德国学者F.Blaschke阐明了交流电机磁场定向即矢量控制的原理,为交流传动高性能控制奠定了理论基础。矢量控制的基本思想是仿照直流电动机的控制方式,把定子电流的磁场分量和转矩分量解耦开来,分别加以控制。这种解耦,实际上是把异步电动机的物理模型设法等效地变换成类似于直流电动机的模式,这种等效变换是借助于坐标变换完成的。它需要检测转子磁链的方向,且其性能易受转子参数,特别是转子回路时间常数的影响。加上矢量旋转变换的复杂性,使得实际的控制效果难于达到分析的结果。

1985 年德国鲁尔大学的 Depenbrock 教授首次提出了直接转矩控制的理论,接着 1987年又把它推 广到弱磁调速范围。大致来说,直接转矩控制,用空间矢量的分析方法,直接在定子坐标系下分析计算与控制电流电动机的转矩。采用定子磁场定向,借助于离散的两点式调节(Band 一 Band 控制)产生 PWM 信号,直接对逆变器的开关状态进行最佳控制,以获得转矩的高动态性能。它省掉了复杂的矢量变换与电动数学模型的简化处理,大大减少了矢量控制中控制性能参数易受参数变化影响的问题,没有通常的 PWM 信号发生器,其控制思想新颖,控制结构简单,控制手段直接,信号处物理概念明确,转矩响应迅速,限制在一拍之内,且无超调,是一种具有高静动态性能的新型交流调速方法。

结束语

电气系统自动化科技的研究对于水利的进步有着非常重要的意义,只有不断的革新电气系统才能够更好的为水利建设服务。

参考文献:

[1]贺家李、沈从炬,电力系统继电保护原理,北京:中国电力出版社,1994.

电气控制系统设计论文第8篇

关键词:电气工程;自动化智能化

中图分类号:F470.6 文献标识码:A

随着计算机科学的不断发展,人工智能技术应运而生,作为新兴的计算机科学的重要领域之一,人工智能理论的研究与延伸,对人工智能技术的本质进行了解释,基于此生产出的与人类智能类似的智能机器即为人工智能技术。该领域研究的对象主要包括:语音识别、图像识别、专家系统、机器人及自然语言处理等。对于电力系统而言,电气工程方面主要包含自动控制、信息处理、系统运行、研制开发、电子电气技术及计算机与电子应用等方面。人工智能技术在电气工程自动化中的实际应用中,还存在一些问题,要对这些问题进行分析和解决,才能促进我国电气工程自动化的发展。

1. 智能化技术

人工智能(Artificial Intelligence) ,英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。 人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能也称为机器智能,是与自然科学和社会科学结合的产物。。在电气自动化领域中,专家系统的应用最为广泛。人工智能技术在电气自动化技领域中的应用,提高了电气工程系统的自动化水平,使设备运行及处理的精确度和准确性大大提高,保证了电气系统的工作效率,节约了大量的人力资源,系统安全性及稳定性也大大提高。在机械设备方面,自动化水平也得到提高,实现了机械设备在无人操作的情况下准确、自动的进行操作与控制,实现了人工智能技术与电气自动化的目标,比如智能配电网中均采用了先进的带数字接口的智能断路器和跳合闸等控制信号的传输方式,而传统的二次电缆也蜕变成数字信号接受的网络传输形式,因此其在工作效率和故障处理的效率上得到了显著提高。

2. 电气工程自动化中智能化技术的应用现状

采用人工智能技术,可以实现以下控制功能:首先,对数据信息进行采集与处理,实时采集所有的开关量与模拟量,根据要求进行处理与存储。其次,画面显示,系统与设备的运行通过模拟画面真实的反应出来,对电压、电流实时的显示出来,根据模拟量、计算量、隔离开关及断路器等,自动生成趋势图。第三,运行管理。专家系统在操作系统中的运用,实现日志、报表的生成,运行曲线、数据存储等操作。第四,故障录波。实现了模拟量的故障录波、顺序记录、波形

捕捉及开关量变位等。第五,操作控制,利用键盘及鼠标对断路器及隔离开关进行控制,实现停机操作,通过设置,对操作人员的权限系统可以进行限制,对值班管理进行加强。第六,在线分析。在线进行参数修改与设定。对不对称的运行进行在线分析及负序量进行计算。第七,运行监控,对模拟量数值及开关量状态实现智能实时监控,通过声光、语音等形式自动报警,对事件的顺序进行记录。

3. 智能化电气工程自动化控制的前景

3.1 电气工程设计中的智能化应用

由于电气设备的设计是一项复杂的工作,与电气自动化专业中电机、电路、电力电子技术、变压器、电磁场等多个学科都存在关系,要求设计人员要有足够的设计经验,需要大量的人力、物力及财力投入。但是,随着人工智能技术的应用,对人脑难以解决的复杂模拟过程和繁琐的计算过程快速的进行了解决,提高了设计的精度和效率。在电力配电网系统中,智能化、数字化的应用特点十分鲜明,比如智能化的互感器已经广泛使用典型的USB 接口,可与网络进行有效的连接,如此便实现了网络保护装置和智能断路器的有效连接,极大程度地简化了配电网二次回路接线,大大降低了配电网的维护工作。

3.2 电气工程控制中的智能化应用

为了有效的实现增强生产、流通、分配及交换,采用电气自动化控制技术,可以有效的降低人力、物力及财力的投入,对系统的工作效率及质量也有效的进行了提高。在电气设备控制中,人工智能技术的应用主要包含专家系统控制、模糊控制及神经网络控制。最常用的是模糊控制,因其简单,与实际联系最为紧密,因此得到了比较广泛的应用。智能化控制器并不需要对控制对象模型进行设计,这就可以从根本上避免一些不确定因素的产生,提高自动化控制的精密系数。智能化控制器在进行调节控制时完全只需要根据相关数据的变化来自行调节,即使没有专门的技术人员在旁边也可以,同样远程调节控制也是可行的,充分体现了电气工程自动化控制的无人操作性要求,对行业未来发展的重要性不言而喻。

3.3 电力系统中智能化的应用

电力系统中,对人工智能技术的应用主要涵盖神经网络、专家系统、启发式搜索及模糊集理论等方面,而专家系统是应用最广泛的一项。专家系统是一个复杂的程序系统,它集合了大量的经验、规则及专业知识,依靠特定领域专家的知识和经验,进行分析和判断,模拟出专家的决策过程,对各种难题进行解决和处理。专家系统主要由知识库、推理机、数据库、知识获取、咨询解释及人机接口等部分构成,常用“If-Then”规则,也就是对If 条件进行满足的基础上对Then 之后的操作进行执行。在该系统的使用中,要根据实际情况对系统规则库及知识库不断进行更新,才能适应发展的需要。

3.4 电气故障中智能化的应用

在电气设备故障诊断过程中,人工智能技术中的专家系统、神经网络及模糊理论的应用较为广泛,尤其是在发电机故障、电动机故障及变压器故障诊断中的应用。对变压器故障进行诊断的方法主要是对变压器油进行分解,对分解出的气体进行分析,然后判断故障的状态。一般使用智能化技术进行变压器故障诊断时,主要分析的是变压器渗出油所分解出来的气体,从而能够快速锁定变压器的故障发生大致范围然后再进一步缩小该范围,将故障发生的局部位置进行检修排查,

从而大大提高了故障诊断与解决的速度和效率。

4. 结束语

就目前情况来看,在我国人工智能技术已经在各行各业中被广泛应用,在电气工程自动化中也得到了充分的体现。本文结合电气工程自动化的特点,将人工智能技术用在最需要的地方。人工智能技术的应用需要一定的时间以及相关科学知识进行支持,在应用中也遇到了一些困难,尽管如此,其发展前景非常广阔,在实际应用过程中,要不断的总结经验,以促进我国电气工程自动化的发展。

参考文献: