首页 优秀范文 无线激光通信技术

无线激光通信技术赏析八篇

时间:2024-01-16 10:23:10

无线激光通信技术

无线激光通信技术第1篇

    1.1激光超声技术的特性

    激光超声测量系统具有非接触性、宽带性、高分辨率、信息高保真等特点。激光超声源能同时激发横波、纵波和表面波,与传统的超声检测相比,激光超声技术具有以下几个优点:(1)远程通信。激光超声技术是通过激光对所产生的超声波进行探测和传送,所以,即使在远距离的情况下,也能很容易实现信号的发送与接受,有利于通信系统的完善。(2)无须耦合。传统的超声波检测技术需要用到耦合剂来形成耦合层,当耦合层发生变动时会严重影响通信质量,而激光超声技术不需要进行耦合,就能顺畅的完成无线通信。(3)减少延迟。在以往的超声衍射当中,存在着检测技术的缺陷,不能及时找到相应的衍射超声波脉冲,而使用激光超声技术,能够很容易获得与激光脉冲等宽的超声波脉冲,使得通信当中避免了延迟。(4)降低干扰。在通信系统当中,干扰是影响通信质量的重要因素,在以往的通信技术下,信息场极易受到外界信息信号的干扰,导致通信的模糊或中断,而采用激光超声测量系统通信技术,能够使用优质的激光超声技术减少信号的干扰,将通信信号及时传送接受,避免不必要的信号干扰。(5)耐高温高压等特殊环境。激光超声测量系统可以将激光束通过玻璃口导入,同时能够在恶劣条件下正常进行超声检测,保证正常的通信。(6)分辨率高。在激光超声测量系统中,所采用的探测激光束能够聚成很小的点,方便探测微小的空间,达到高分辨率的效果。

    1.2激光超声技术存在的弊端

    (1)尽管激光超声薄的振幅与宽带压电换能器所发出的振幅相当,但激光干涉仪的接收灵敏度比传统的超声波系统差许多,在超声频率范围内,传统的压电传感器的探测极限为0.01pm到1pm,而在理想条件下,激光超声技术的最小可测位移在100pm左右,所以激光超声技术缺乏灵敏度。(2)激光超声测试系统的体积庞大,检测系统复杂,相对与传统测量系统的造价也比较高。(3)激光超声技术采用的是高能激光,因此,在工作场地必须建立完善的激光防护措施。

    2激光超声测量系统的设计

    2.1硬件设计

    激光超声测量系统包括超声激励和检测两部分,且激光超声激励的检测方法分为三种:第一种是激光激励激光接收的方式,该方式利用激光脉冲与对象所产生的超声波,采用光学接收器接受测量材料中的超声波。第二种是激光激励超声接收方式,该方式利用激光发出的激光脉冲所产生的超声波,通过压电超声换能器转换为接收器所能够接收的检测信号。第三种是超声发射激光接收方式,该方式利用压电超声转换器所产生的超声波对信号发出的超声进行检测,通过激光干涉的方法接收所检测的有用信号。

    2.2软件设计

    激光超声测量系统是由计算机、数据模块、无线通信模块以及激光超声激励检测子系统组成,形成的点对点通信的无线传输。当进行通信时,计算机与通信终端采用的是相同的载波频段,当系统发出通信邀请通知时,收发器应答,并及时与主发器进行连接,发出信息地址,当数据模块将采集信息放大后,进行模数转换,将信息转换成数字形式传输给无线收发系统,进行通信,最后在通信终端利用单片机储存器将数据进行还原,通过数模转换将信息呈现出来。单片机的主程序能够实现采集数据、模数转换、数模转换以及数据的传送,保证设备能够顺利完成无线数据发送与接收。

无线激光通信技术第2篇

【关键词】 空间光 通信 无线 激光

一、空间光通信简介

空间光通信是一种新型的光通信方式。空间光通信技术在20 世纪80 年代就开始用于军方,随着掺饵光纤放大器、波分复用、自适应光学等技术不断发展,无线光通信在传输距离、可靠性、传输容量等方面有了较大改善, 适用面也越来越宽。

二、基本原理

空间光通信是一种基于光传输方式、采用激光承载高速信号的无线传输技术。它以激光为载体、以大气为介质,用点对点或点对多点的方式实现连接,有“虚拟光纤”的美誉。空间光通信结合了光纤通信和无线通信各自的优势,具有频带宽的特点。

下图是空间光通信的通信示意图:

(1)大气激光通信

(2)空间激光通信

三、空间光通信的发展动力

消费者对网速和带宽的要求越来越高,都在追求更快的网速和更宽的带宽。其次是消费者对无线技术的追求。从有线电话通信发展到无线电话通信我们可以看出,我们是不断朝着无线发展,朝着便捷的通信方式发展。最后是空间光通信具有其他通信方式所不具有的优势,比如安全性能比无线电波通信好,通信容量更大等等。

四、空间光通信的巨大的商业价值

空间光通信具有广阔的市场和巨大的商业价值,具体表现在以下几方面:

(1)可以克服一些通常容易碰到的自然因素障碍。(2)提供大容量多媒体宽带网接入。(3)可为大企业、大机关提供内部大容量宽带网。(4)为军事等重要部门提供宽带保密通信。(5)支持灾难抢救的应急系统。

五、制约因素

(1)自然因素。大气衰减和闪烁是影响无线光通信最大的因素,特别是雨、雾、雪等恶劣天气的影响更大。国外针对大气传输特性已作了许多研究,已取得重大进展,所推出的产品声称具有全天候通信能力。(2)技术因素。①视距技术;②对准与保持技术;虽然这些技术因素曾经一度制约着空间光通信的发展,但是现在国外已经有一些产品声称克服了这些技术瓶颈,已经能够正常通信了。(3)噪声因素。在近地面进行激光通信时,不可避免地会受到自然光和各种人造光的影响,但是在国外已经公司声称克服了这些影响做出产品。而要将光通信应用到建筑群里或者室内,这也将受到各种人造的噪声的影响,诸如荧光灯,霓虹灯和白炽灯等等。

六、无线光通信的优点

(1) 通信容量大。(2)系统尺寸、质量和功耗明显降低。(3)各通信链路间的电磁干扰小。(4)保密性强。

世界上各个大国尤其是军事大国,无不在追求可靠和保密性强的通信。因为军事上的通信的保密性是否良好对该国的安全有举足重轻的影响,甚至会影响国家的兴衰和民族的存亡,所以这就成为空间光通信。

七、军事应用

(1)指挥单元之间的通信;(2)战场通信迅速恢复;(3)复杂地形通信;(4)战斗单元机动协同通信;(5)核潜艇的指挥通信。

无线激光通信技术第3篇

关键词:DWDM;通信传输技术;分波和光合波技术

中图分类号:TN929.1

随着经济和科技的迅速发展,DWDM技术在国际上已被通信行业广泛应用,并围绕DWDM技术来开发新业务。在我国的通信系统中,原有的低速率载波通信、卫星和单波氏SDH的光纤、中小容量微波等技术,已不能满足人们的通信需求。电信通信网要实现进一步发展,必须应用高端和实际的通讯技术。目前,DWDM技术正被电信企业广泛使用,其使用过程取得较好效果,不仅能够提高信息传输以及用户通话的质量,满足用户的需求,还能降低电信企业的运营成本。

1 DWDM技术的概况

DWDM即密集型光波复用,DWDM技术主要用于光线骨干网,将一组的光波长组合于一根光纤,通过光线进行传输,不仅能够提高带宽激光技术,还能够减少所需光线的数量。DWDM能在一根光纤上进行组合并传输,将一根光线换成多个虚拟的光线,是为了保证传输有效。通过应用DWDM技术,传输效率正逐步提高,传输的容量在逐步扩大。DWDM技术主要的优点是传输速度与协议不相关,以DWDM网络为基础能够采用ATM、IP、以太网等协议进行数据传输。在激光信道中,以DWDM网络为基础能够根据不同速度来传输不同类型的数据,有效降低电信企业的成本,快速响应用户需求。

2 DWDM层面的通信传输技术的优点分析

2.1 承载容量较大

目前,在我国的数据传输中,主要使用光纤带宽。由于光纤能够传输及承载的带宽较宽,但数据传输技术受到限制,致使光纤宽带利用率较低,许多情况下都不到全部带宽的10%,造成资源过度浪费。通过应用DWDM技术,将数据完全集中于一根光纤,使光纤带宽得到充分利用,不仅能够提高光纤带宽整体的使用率,有效减少了资源浪费及材料损耗,还能够降低了企业运营的成本。现在我国国内商用的DWDM系统,能够传输4960万路的电话。随着科技的发展,DWDM技术正逐步完善,提高了DWDM技术的功能,扩大了DWDM技术的容量,使其承载容量的空间无限增大。

2.2 组网较灵活

通过DWDM技术的应用,使光纤数量逐步减少。通过对信号进行前期处理,减少了任务量,节省了企业运行成本,使光纤带宽利用率得到有效提高。在组网过程中,应用DWDM技术,能够降低组网成本以及企业运营成本。与传统分复用的技术相比,其网络结构主要采用DWDM技术。使网络结构稳固,网络层次分明,网络流程简化,网络环境得到优化,提高了网络整体的灵活性。

2.3 数据逐步实现分离与综合

DWDM的传输速度与协议不相关是DWDM的关键优点,基于DWDM网络的传输数据主要采用IP协议、ATM,以太网协议,SONET/SDH进行传输,其处理数据流量2.5Gb/s以内。以DWDM为基础的网络能够在激光信道之上,使不同的数据流量通过不同速度进行传输。传输过程中,不需要考虑的问题是本身的信号速率及数据特性,使数据实现有效分离与综合。

2.4 升级能力较强

以DWDM为基础的网络能够不断进行升级,进一步扩大其容量,使其弹性空间无限增大。在满足用户需求的同时,使未来的新项目在发展道路上得到满足及保证。DWDM技术的运作速率及业务信号类型各不相同,使整个网络有较强的透明性。

2.5 网络服务多样化

DWDM与规约,传送速率无关,DWDM网络在完全通透的情况下,能够SDH、ATM、IP等进行信号介接,从而为网络提供多样化服务。

3 DWDM技术在通信传输领域的应用分析

3.1 DWDM技术在长途干线系统中的应用

在长途干线的系统中,主要是使用点对点的系统,长途线路进行铺设时易消耗众多材料。通过DWDM技术的应用,能够避免资源浪费,使声音的真是度及清晰度得到改善。现在,通用组网主要有链形组网、环形组网以及点对点组网3种方式[1]。而点对点的组网方式主要用于长途干线的系统,铺设长途干线系统时,铺设的路线较长、较多。通过DWDM 技术的应用,能够节约材料,避免资源浪费,使网络信号得到改善,从而提高声音的真实性及清晰度,逐步实现超长距离的无再生中继。对于远距离光纤铺设及使用的过程,我国基本是采用点对点的密集型光波复用的系统,还未实现网络之间的交流与沟通。

3.2 DWDM技术在短途无中继系统中的应用

目前,DWDM系统已经在短距离信号的传输中得到应用,只是还未涉及长途通信与信号传输。短程无中继的密集波分复用系统能够根据不同情况、不同地理位置来做决定,最少在几十公里,最多可以到四百公里。在距离较近的区域使用DWDM系统,只需在必要地方设置分波器和合波器,在电力无法供应时,同样能够实现信号完整的传输,不仅降低电信企业运营成本,还使信号传输质量得到保证。随着科技的发展,DWDM技术正逐步完善,在更多区域之间,如不同经济区域、不同信息中心、不同城市之间都可以应用DWDM技术实现更好的沟通及连接。

3.3 激光器调制对DWDM技术的干预

DWDM激光器调制主要是对光源强弱进行干预,其干预措施包括外调制和直接调制的技术[2]。外调制的技术是通过高速的电信号对另外的媒体进行加载,根据物理的特性让型号光波的特性发生改变,相当于激光与通信信号搭建的一道桥梁,这也是外调制优势所在。激光器的优势是使大功率激光不受干扰,能够顺利进行调制。直接调制的技术是控制电流量改变光波强度,对光源产生直接作用。能够减少插入的损耗、节省投入的资金、使其运作的结构简单化,这就是直接调制的优点。从节省开支层面来看,直接调制的激光器才是首选。

3.4 分波和光合波技术影响信号的质量

分波和光和波的技术是DWDM系统的技术之一,能够影响传输信号的质量。从优劣方面来判断分波和光和波的技术,有两方面的标准,信道问隔离度与插人损耗。信道问隔离度的数值越高,越能够减少传输信号扰和串改的频率。插入损耗数值越小,越能够保证信号的质量。目前,普遍通用的分波器和光合波器主要有阵列波导光栅(AWG)和光栅型合波、阵列波导光栅(AWG)和光栅型分波、介质薄膜滤波器以及耦合器等。阵列波导光栅(AWG)和光栅型合波主要用于速度高、容量大的DWDM系统,其优势在于信道数多、波长间隔小及平坦等,不足之处是温度的特性较弱。阵列波导光栅(AWG)和光栅型分波优势却是温度特性。介质薄膜滤波器制造过程较为繁复,投入资金较高,不适合应用在多波长DWDM系统,但插入损耗小却是介质薄膜滤波器的优势。

耦合器普遍应用在路线较少的情况下,它能够节省资金且结构较简单,但是不便插入损耗、易被信息干扰。

4 结束语

综上所述,DWDM层面的通信传输技术正被电信行业及相关企业广泛应用。DWDM技术的优越性,能够提升数据传输的效率,不仅提高信息传输以及用户通话的质量,满足用户的需求,还降低了电信企业的运营成本。

参考文献:

[1]梁士超.基于DWDM层面的通讯传输技术研究[J].硅谷,2012(4):57-58.

无线激光通信技术第4篇

图1 空间激光无线通讯系统原理框图

1 总体方案设计

激光天线通信系统主要由激光发射装置、激光接收装置和光学望远镜三部份组成(如图1所示)。其工作原理是:发射端的轴电缆通过高频电缆与发射机码型变换器相接;光纤适配器通过光纤与发射机光电转换器相连;码型变换器与光电转换器均与制式选择开关相连,然后经信号处理模块进行整形、放大、时钟提取等处理,输入激光驱动器使激光器组件产生调制的激光光束,通过激光发射天线定向向空间发射。经光接收天线收集的调制激光信号接进探测器,转换成信号输入信号处理模块,再接进制式选择开关后分两路:一路连接激光驱动器,经光纤适配器连接光纤通信线路;另一路则与码型变换器相接,再接入同轴电缆至电传输线路上。对于本系统所设计的语音激光无线通信系统主要由图2所示的各部分组成。

2 主要硬件的设计

2.1 激光器件的选择

空间激光通信波长选择主要考虑:尽量避免太阳辐射的影响、减小光束发射角、减小收发天线的尺寸、光波在大气中的透过率以及器件的现实性或预期的可行性,包括器件性能价格比的预计。从激光天线通信的角度分析,大气的透射率是个重要影响因素。在小于300nm的紫外波段,大气的透过率急剧下降。显然,紫外线光不利于大气通信。可见波段的激光,例如二次倍频YAG激光器,也不利于避免太阳光引起的背景辐射噪声。常用的激光波段有830~860nm、980~1060nm和1550~1600nm,都是良好的大气窗口。

2.2 光发射与接收天线

由于光学天线的功能是将需传输的光信号有效地发向对方并将对传来的信号光高效接收,因此,光天线的设计是在满足总体设计的前提下,保证系统在设定的通信距离及大气衰减时能正常工作,合理选取发射远镜的远场发散角、接收望远镜的接收视场角及光学系统的其他参数。下面分别予以介绍。

(1)设计考虑

主要光学性能要求:高的光学质量(λ/20RMS);低的遮挡率;高的光透射率(T≥0.92);低的散射光。此外,要求材料热膨胀系数小、机械强度纺高、重量轻、使用寿命长。

图3 (a)光发射天线系统原理图(b)光发射天线系统原理图

光学设计考虑:为了满足空间通信对天线的要求,笔者选择卡塞格伦天线。主要包括:抛物面初级反射镜;双曲线次级反射镜;聚焦镜,使成像在天线结构的外部。

(2)性能分析

假设光源电场强度满足高斯幅度分布,即

其中,ω为光腰大小,R表示曲率半径。

无线激光通信技术第5篇

卫星移动天线系统

卫星移动天线系统是特种天线,是由军事转为商业用途的高科技的天线,是由一整套卫星移动通信技术和设备组成的系统。

卫星移动天线系统是运动中接收卫星信号或发射、接收双向通信的天线。卫星移动天线系统采用激光制导、遥测天控技术、GPS卫星定位等技术,能自动捕获目标卫星;采用先进的自跟踪技术,能在载体运动的情况下,对卫星进行高精度的自动跟踪。

根据接收方式不同,分为:在固定地点、自动寻星的卫星移动天线系统―――静中通;运动中自动寻星、接收卫星电视信号的卫星移动通信天线系统―――动中通。

根据通信方式不同,分为:单向接收卫星电视信号的天线系统―――单向卫星移动天线系统;可进行双向移动通信的天线系统―――双向卫星移动通信天线系统。

单向卫星移动天线系统可以接收卫星电视、卫星广播、图文资料等多媒体信息,广泛应用于汽车、火车、轮船、气垫船、海上石油平台、物探船、军舰。

双向卫星移动通信天线系统可进行移动通信。通过卫星在移动过程中直接通信,不间断地双向传输图象、数据、语音等多媒体信息,进行电视直播、电视转播、语音通讯、视频会议、远程调度管理,应用于电视直播、卫星通信、转播车、电视台、银行、军队、军舰、气垫船、水陆两用坦克、公安、以及大型调度管理系统。

卫星移动天线系统还可以利用基本的原理,在功能上进行扩展,将移动载体的通信进行广度和深度的充分应用。卫星移动天线系统可广泛应用于电视台、电视直播、电视转播、长途客运、野外地质、勘探、测绘、公安巡逻、指挥、消防现场指挥车、飞机 、地勤车辆、铁道列车、内河船舶、海洋客货渔轮、海洋石油钻井平台及后勤船舶、海军战舰及后勤给养运输船、 油轮、银行、金融系统、公交、交通管理、救援和坦克、装甲摩托化战车、以及其他大型调度管理系统。如图1 悍马车载天线、图2 船载天线所示。

卫星移动通信系统

卫星移动通信系统是多项尖端科技的结晶。1962 年,美国利用微波中继通信技术成功地发射了“电星一号”能动型通信卫星,开始了卫星通信的历史。

当第一颗通信卫星发射升空之后,卫星通信专家、军事通信专家和军事战略家就瞄准了卫星移动通信的巨大、广泛的潜力和深远的军事意义。现代战争是信息的战争。卫星是信息战中的重要信息平台和信息支援。卫星、卫星通信、卫星移动通信关系到信息战的胜负。卫星通信与信息战之间存在着密切的联系。

在运动中传输图像、语音、数据是各国卫星通信的难题。卫星移动通信系统面临极大的挑战。一般天线、通信站(编者注:即用户终端)都是固定或定点的,或是移动式通信车将车辆开到固定地点,然后进行卫星通信作业。但这种方式越来越不能满足现代通信的要求。卫星通信的优点是覆盖范围广,缺点就是不能像无线通信一样可以移动通信。所以不论商业通信、军事通信等总受到限制。

卫星移动通信系统要解决传输速率、通信质量和保证运动中进行通信的难题。传输速率要高于低轨道卫星移动通信的传输速率,并可捷变;传输图像、语音、数据等高速信号,而信号质量要与静止通信一样;载体在路面、海面等不稳定的运动速度、运动方向下,要保证通信的速率和质量;载体和天线在随机行进的情况下,受到电波干扰、电子干扰;高楼、桥洞、森林、山体遮挡;雨衰、大浪强风、磁场等干扰,要尽快恢复通信中断。

由于技术和时代的限制,卫星移动通信技术没有多大进步。进入九十年代,数字技术、通信技术、计算机技术、激光陀螺技术、激光陀螺制导控制技术、遥测天控技术、全球GPS定位技术等高科技的诞生和发展,卫星宽带移动通信系统应运而生。

卫星宽带移动通信系统SMCS(Smooth Mobile Communication System)―――动中通,成为各国研制开发的重要目标,并研发出多种动中通。

卫星移动通信系统的动中通最早装备美军。为使快速前进的部队与指挥官及其它军种、司令部之间保持连续通信,而装备在美国陆军的车辆、装甲车、坦克通信车上;而在海军的各类军舰、航空母舰上增添了一个个绿色、黑色、白色、乳白色和迷彩色的半球型、半圆头柱体型的动中通。动中通以轻便、快速为主要特点,部队中途停下来架设天线的作战方式,已成为过去,已不适应当今的作战速度。

美国的“凤凰计划”其中一个重要项目就是研制保密、移动、抗干扰、可靠的、简单和大容量通信战术终端(SMART-T),作为单向透明战略的重要、必要的技术和设备。

美国的Mosaic ATD计划是将美国DARPA资助的GloMo、SUO SAS、ACN(空中通信节点)项目技术与陆军通信及电子司令部(CECOM)研究发展中心(RDEC)的几项研究技术结合在一起,进行移动通信演示。通过验证和筛选,把商用产品和国防部的研究成果集成在一起,目标是满足未来战斗系统(FCS)和目标部队(Objective Force)的通信需求以及战场指挥系统基础结构的可移动性,形成一个战场所需的无缝隙通信体系结构。Mosaic是多功能的动中通、抗毁、抗扰、自适应综合通信系统。

美国已开发出用于“悍马”车使用的新型更小更轻便的动中通。位于麻省的沃尔瑟姆雷声公司制造的安装在“悍马”车上的动中通―――SMART-T,同时还适用于高级极高频飞机。

SMART-T首次应用于伊拉克战争。美国动用了GPSIIR-8和国防卫星通信系统IIIA-3卫星在内的数十颗军用卫星和部分商用卫星,卫星总数多达 100 多颗。10多颗侦察卫星以及伊诺克斯-2 等商用遥感卫星对伊方的军事行动进行严密监视;KH-12光学成像卫星、“长曲棍球”雷达成像卫星等俯视整个伊拉克战场;“大酒瓶”等电子侦察卫星监测伊拉克无线电信号。

在伊拉克战场上,美国借助于卫星,信息化战场变得高度透明。美英联军能迅速获取各类静态和动态的作战信息,并实时地传递和处理。信息的获取达到了精确化、实时化。美英的动中通利用信息打击、瓦解、欺骗伊军,伊军迅速土崩瓦解。动中通的功能、威力引起各国军方的注意。

2004年10月,位于美国西盐湖城的L-3通信公司设计开发出为多功能卫星移动通信终端,也属于“凤凰”计划的一部分。该设备十分小巧,首期装备美国陆军,并将装备海军陆战队、空军、预备役部队和国民警卫队。

加州阿纳海姆的波音作战管理C3分部和麻省马尔伯勒的雷声网络中心系统机构负责研究生产卫星移动通信以及各军种间地对地,地对空卫星通信的更新一代的通用终端。

英国的Thales公司参与了美军JTRS计划和英国的Bowman 计划,开发出系列增强型数字卫星移动终端,支持战时的信息传输;法德两国联合研制的多模式多用途高级演示模型MMR-ADM提出了未来战术通信系统。

美国SeaTel公司专门研发海上移动通信,为军舰、潜艇、航空母舰、大型商船、货轮、油轮提供海上无间断的通信和电视服务。

空中移动通信,最典型的是美国应用于无人机全球鹰―――Global Hawk,全球鹰的卫星移动通信,凭借卫星覆盖范围广的优势,将侦查的图像、照片实时回传司令部。

卫星、卫星通信已经越来越成为各种武器的“神经”。数字化部队、数字化战场、非线性作战、全维作战、立体空间作战、信息战争、机器人战士、智能战争等都离不开卫星、卫星通信、卫星移动通信。

在军事领域发挥作用的同时也广泛应用于民用。俄罗斯、印度、中国、日本、以色列、意大利、澳大利亚等20多个国家对卫星移动通信展开深入研制。全球领先的卫星移动天线和通信解决方案供应商 RaySat(TM),Inc.推出了全球最小的卫星电视车辆天线 TeleRay(TM)。TeleRay天线是为日本国内汽车市场而开发的。TeleRay 厚度为 2.5CM,直径为 40CM,是一种小尺寸车顶天线,行驶车辆中的乘客能够观看现场直播的日本 BS/CS 卫星电视广播。

卫星移动通信系统技术

1.卫星移动通信系统可以通过任何一颗地球同步卫星或空中平台,超越时间和空间的限制,实现点对点、点对多点卫星移动多媒体通信,并能迅速将移动载体中的多媒体数据瞬时传到世界各地和接收世界各地的多媒体信息。但卫星移动通信系统要克服电波在运动传输时的各种致命的影响。

(1)陆地卫星移动通信:陆地卫星移动通信的电波在运动传输时,会遇到各种物体,经反射,散射、绕射、到达接收天线时,已成为通过各个路径到达的合成波。各传输路径分量的幅度和相位各不相同,造成合成信号起伏很大,形成多径衰减。电波经建筑物、树木等阻挡被衰减,对车载等陆地卫星移动通信系统的信号传输造成极大威胁。

(2)海上卫星移动通信:海上卫星移动通信的传输,有来自近处的正常反射波镜面反射,也有来自前方较广范围的非正常反射波杂射波。

(3)航空卫星移动通信:航空卫星移动通信由于速度的关系,有来自更多、广泛的非正常反射波杂射波。当飞机移向卫星时,频率变高,远离卫星时,频率变低,而且由机的速度十分快,就会产生“多普勒效应” ”。

1842年,奥地利物理学家、数学家多普勒•克里斯琴•约翰(Doppler Christian Johann) 在文章 “On the Colored Light of Double Stars” 首先提出了“多普勒效应"(Doppler Effect)这一理论。多普勒频移,也称多普勒效应,是为纪念多普勒而命名的。

多普勒发现声波频率在声源移向观察者时变高,而在声源远离观察者时变低。把声波视为有规律间隔发射的脉冲,可以想象为你每走一步,便发射了一个脉冲,在你之前的每一个脉冲都比你站立不动时更接近你自己;而在你后面的声源则比原来不动时远了一步。或者说,在你之前的脉冲频率比平常变高,而在你之后的脉冲频率比平常变低了。

多普勒效应不仅仅适用于声波,适用于所有类型的波形,包括光波。科学家Edwin Hubble使用多普勒效应得出宇宙正在膨胀的结论。他发现远处银河系的光线频率在变高,即移向光谱的红端。这就是红色多普勒频移,或称红移。若银河系正移向他,光线就称为蓝移。

在卫星移动通信中,当飞机移向卫星时,频率变高,远离卫星时,频率变低,而且由机的速度十分快,就会产生“多普勒效应”。非静止卫星本身也具有很高的速度,两个高速移动的物体进行通信,难度很大,所以航空卫星移动通信系统是由静止卫星提供,尽量消除“多普勒效应”。

2.卫星移动通信系统可与区域网和地域网实现有线或无线接入,组成天地合一的无缝通讯网,使信息得到广度和深度的传播与利用,是众多顶尖高科技综合运用综合研发的方向

3.卫星移动通信系统运用了激光陀螺制导控制系统、遥测天控技术、全球GPS定位技术等高科技。

惯性导航制导系统简称惯导系统:

最早应用惯性制导武器系统的是二战时期德国的V-2火箭。经过半个多世纪的发展,惯性制导系统的应用被扩展到海陆空各大军事民用领域,已经成为高科技武器装备不可缺少的子系统,广泛运用在海、陆、空各种运载工具,在国防科技上占有十分重要的地位,也是世界各军事强国重点发展的技术领域之一。

惯导系统的主要组成部分包括:陀螺、加速计和计算机。

陀螺是关键部件。陀螺主要分为机电陀螺和光学陀螺,光学陀螺分为激光陀螺与光纤陀螺。光学陀螺是对机电陀螺的重大突破,激光陀螺已逐步替代了机电陀螺。

激光陀螺的原理是利用光程差来测量旋转角速度(Sagnac 效应)。激光在闭合光路中,由同一光源发出的沿顺时针方向和反时针方向传输的两束光和光干涉,利用检测相位差或干涉条纹的变化,就可以测出闭合光路旋转角速度。激光陀螺仪的基本元件是环形激光器,环形激光器由三角形或正方形的石英制成的闭合光路组成,内有一个或几个装有混合气体(氦氖气体)的管子,两个不透明的反射镜和一个半透明镜。用高频电源或直流电源激发混合气体,产生单色激光。为维持回路谐振,回路的周长应为光波波长的整数倍。用半透明镜将激光导出回路,经反射镜使两束相反传输的激光干涉,通过光电探测器和电路输入与输出角度成比例的数字信号。

光纤陀螺三轴惯测仪是由三个光纤陀螺仪和三个石英挠性摆式加速度计组成,可以实时地输出载体的角速度、线加速度、线速度等数据,具有对准、导航和航向姿态参考基准等多种工作方式,用于移动载体的组合导航和定位,同时为随机运动的天线的机械控制装置提供准确的数据。主要性能:加表精度 1×10-4g;光纤陀螺精度(漂移稳定性)≤1°/h;标度固形线性度≤5×10-4。

激光陀螺除导航功能外,还可为舰艇上的武器控制和作战管理系统提供精确的姿态和航向数据。

由激光陀螺、线加速度计和控制线路等组成的系统称为激光陀螺捷联惯性导航系统,简称激光制导系统、激光惯导系统或激光陀螺惯导系统。激光惯导系统能实时解算出车辆、舰船、飞机、导弹、火箭等载体的航向姿态、速度和位置变化并输送到控制系统,从而实现自主导航、精确制导,是理想的导航平台、发射平台、通信平台和测量平台。

我国某航天军工公司的激光陀螺捷联惯性导航系统技术指标表1。

激光陀螺、激光陀螺惯性制导系统作为精确制导和精确定位的关键技术,已得到大量装备和使用。

1982年,美国开始在“战斧”式空对舰巡航导弹上用激光陀螺替代原来的扰性陀螺。

1986年,激光陀螺系统在“阿里亚娜”运载火箭上试飞成功。激光陀螺迅速应用到几乎所有型号的导弹惯导系统中。

1997年,以激光陀螺为核心的第二代标准惯导系统。在美国已被大量应用到各类军用飞机上,如F-117A隐形战斗机。采用激光陀螺/GPS导航的飞机的导航精度平均达到了5.2米。

近年来,美国和北约海军军舰近年来用激光陀螺惯导系统取代用于潜艇和各种水面船只的扰性陀螺仪。

美国陆军对炮兵多管火箭系统进行增程,射程从32公里提高到45公里,随着射程的提高,投放误差也将增加,采取了激光陀螺制导系统,不但提高射程还提高了火箭命中率。

美军已大量装备了激光陀螺惯性制导系统,复杂山路上运动中的地面通信车、海面上运动中的舰艇、各种战机和导弹能在运动中时刻精确对准军用卫星,进行无障碍通信。

激光陀螺惯导系统的优越功能决定了首要的应用领域是在军事上,同时也迅速应用与民用方面,用途甚广。

1980年,激光陀螺被美国波音公司选中,最早用于新研制的波音757客机、767客机的导航系统中。

1981年,欧洲的空中客车A310也采用了该系统。激光陀螺惯导系统不但在导航精度上大大提高,同时它比常规的惯导系统的可靠性提高5倍以上。

激光陀螺惯导系统在“动中通”上的应用,能为商船、火车、汽车提供运动中卫星通信、导航以及在运动中接收卫星电视信号。

卫星移动通信系统组成

卫星移动通信系统是由卫星自动跟踪系统和卫星通信系统两部分组成。

1.自动跟踪系统:卫星自动跟踪系统是天线在载体运动时对卫星的准确指向。

(1)天线系统:卫星天线的工作状态是三维运动的。采用卸载和储力方式减小天线传动时的负载惯量。由于各种运动力的影响,卫星的位置在不断地漂移,其姿态也在细微地改变,天线能减少指向误差。

(2)伺服系统:采用位置环或速度环控制方式,使用模拟硬件提高电路响应速度,减小伺服跟踪系统的动态滞后误差。

(3)数据处理:计算平台,对误差信号、载体的动态信号进行处理,计算出天线的控制信号。

(4)载体测量:

卫星移动通信系统对运动载体与卫星的测量提出极高的要求。

捷联式惯性导航系统测量出载体的变化量,天线根据跟踪参数实时调整指向。捷联式惯性导航系统的主要设备是激光陀螺,激光陀螺是在光学干涉原理基础上发展起来的新型导航仪器 能对物体进行精确定位。

石英挠性摆式加速度计是由熔融石英制成的敏感元件,挠性摆式结构装有一个反馈放大器和一个温度传感器,用于测量沿载体一个轴的线加速度。

2.卫星通信系统:卫星通信系统是将上行信号传输到卫星,卫星转发器传送下行信号到地面卫星接收系统;或单方向接收卫星信号设备。卫星电视双向传输的主要设备有:编/解码器、调制/解调器、上/下变频器、高功率放大器、双工器和低噪声放大器。如图5 美国Rantec 微波系统公司飞机卫星天线内部所示。

卫星移动通信系统工作原理

载体在运动过程中,由于姿态和地理位置发生变化,会使卫星天线的指向偏离卫星,造成通信中断。必须对载体的这些变化进行隔离,使天线始终对准卫星。这是天线稳定系统要解决的主要问题,也是移动载体进行不间断卫星通信的前提。

位置的经度和纬度及相对水平面的初始角。根据其姿态及地理位置、卫星经度自动确定以水平面为基准的天线仰角,在保持仰角对水平面不变的前提下转动方位,并以信号极大值方式自动对准卫星。

载体运动过程中,测量出载体姿态的变化,通过数学平台的运算,变换为天线的误差角,通过伺服系统调整天线方位角、俯仰角、极化角,保证载体在变化过程中,天线对星在规定范围内,使卫星发射天线在载体运动中实时跟踪地球同步卫星。

跟踪方式有自动跟踪和惯导跟踪两种。自动跟踪是依靠卫星信标进行天线闭环伺服跟踪;惯导跟踪是利用陀螺惯导组合敏感载体的变化进行天线跟踪。这两种跟踪可根据现场情况自动切换。

当系统对星完毕转入自动跟踪后,以自动跟踪方式工作;同时,惯导系统也进入工作状态,并不断输出天线极化、方位和俯仰等数据。

当由于遮挡或其它原因引起天线信标信号中断时,系统自动切换到惯导跟踪方式。同时,利用先进的卫星移动通信系统传输广播电视信号,可完全达到现场转播效果。

载体可在20~100km/h的行驶速度下通过卫星双向传送或接收卫星信号、电视信号,运动载体在运动过程中不间断进行卫星通信。

卫星移动通信系统的评价

1.卫星移动通信系统的优点

(1)自主跟踪。采用自主跟踪方式跟踪卫星,充分利用了卫星通信覆盖区域大、抗干扰能力强、线路稳定的特点,可实现点对点、点对多点、点对主站的卫星移动通信;

(2)灵活机动。能确保快速、实时的静态、动态的现场通信;

(3)自动重捕时间短。驶出通信盲区后能快速恢复通信;

(4)通信质量可靠。信号传输过程的节点少,提高通信质量和可靠性;

2.卫星移动通信系统的缺点

(1)通信盲区:在环境比较复杂的情况下,高楼、桥洞、树林、山体遮挡;雨衰、大浪强风等干扰,会出现信号中断现象;

无线激光通信技术第6篇

关键词:无线光通信;大气信道;发射器配置

中图分类号:TN929 文献标识码:A 文章编号:1009-2374(2013)35-0083-02

1 无线光通信关键技术概析

1.1 无线光通信技术与传统通信技术的比较

无线光通信技术相比于传统的数字微波、铜缆数字用户线、光纤、无线电等通信技术,其优势主要如下:第一是安全保密性高,主要因为激光具备高指向性、传输目标准确、发射光束窄的特点,使其发散角保持在毫弧度甚至微弧度的数量级,保证了传输信息的稳定、安全和保密;第二是设备架设迅速,主要因为光波的波长短,使其通信天线的功耗、体积、质量等品质均优于微波、毫米波等通信天线,加之无线光通信架设、组网迅速,只在通信节点上进行设备安装,建设工期以小时为单位,适合作为应急类光纤通信故障后备或者临时性大容量通信链路建设,容易进行撤换和重新部署;第三是信息容量大,指以光波为信息载体的传输速度可达10Gb/s,实验室的无线光通信设备传输速度甚至可达到150Gb/s,另外其通信的工作频率在350THz左右,各种设备间不存在信号干扰,无需申请频率使用许可,在协议兼容性良好的条件下,可以迭加任何传输协议,实现电路和数据业务的全透明传输;第四是运营成本低,其无需昂贵的工程管道铺设和使用中的维护费用,造价是传统通信工程的20%左右。

1.2 无线光通信技术组网通信中的关键技术

采用无线光通信技术组网通信时需考虑下列关键技术对通信质量的影响:其一是选择波长,空气中的水分子会衰减波的传播,对波长具有选择性,一般会选用损耗低的窗口850nm和1550nm波长,另外考虑到激光能量密度或功率密度超过次阈值时对人体眼睛的损伤问题,经试验证明,1400nm波长以上的激光对人眼的致伤阈值是1400nm波长以下的激光的45倍左右,因此建议在室内选择1550nm波长的激光作为工作波长;其二是降低空间损耗,即通过提高发射功率、增加光束数量、聚焦波束、拓宽接受动态范围等措施,降低激光波束在空间传输过程中的损耗,再者需考虑不同气象条件下空气中水分子、水滴、颗粒等对激光传输造成的损耗;其三是传输定位,因日光、风力、季节、雨雪等自然条件变化下,易引起建筑物及固定基座的位置偏移,可采用变焦以改变波束发散角或者利用CCD光强度或波形自动定位和跟踪;其四是消除闪烁和散射,因空气内部温度的不均一性,大气的折射系数存在明显差异,易引起传输信号强度的变化,其影响范围主要在大于500m的长距离通信中,可采用多波束或者利用相关检测方法解决的手段,空气散射主要指空气内部温度不均一性造成的介质折射率不同,易造成传输损耗,可采用合理规避排风口、烟囱、高温屋顶、管道等手段解决;其五是提高传输速度和编选特殊编码,采用粗波分复用CWDM方法是提高传输速度的主要手段之一,编选特设编码意在提高无线光通信的保密性,因为激光直线传输使其扩散角度较小,将接收器置于传输路径中易导致传输中断,若在光束的扩散区域中则易使损耗过大,接收灵敏度要求过高,因此编选特殊编码则可解决上述问题,提高无线光通信的保密性。

2 大气信道对无线光通信链路的影响

2.1 大气信道对无线光通信链路的影响

无线光通信系统的传输介质(载体)是大气信道,激光在大气信道中传输时因大气层参数随机性易产生大气衰减和大气湍流效应两类影响。大气衰减主要指大气中存在的气体分子、水雾粒子、气溶胶粒子、部分微粒等吸收或者散射辐射光能量,造成能量损失、能量重新分配或者能量偏移传播等现象。大气始终处于运动状态下的不稳定体系中,其折射率随着时间和空间变化无规则变化,因此光波参量也随着折射率的变化而随机地影响到光束的传输质量。另外大气中雨、血、浓雾等自然恶劣条件也会导致多光信号造成严重的衰减,一般可采用提高功率的方法克服。大气湍流主要指大气湍流运动状态下因折射率随机变化造成的光束扩展、光束弯曲、光强闪烁等影响,例如光强闪烁影响,其指光束通过湍流漩涡时,光束直径内的独立形成散射和衍射现象,是光强在折射率随机变化下高低起伏,造成波前失真和相位变化的问题,大气湍流效应不仅影响光束的传输途径和光束的位置指向,而且会增加光束的传输损耗,严重时甚至会导致通信的错误和中断,采用自适应光学技术能解决大气湍流和大气扰动的动态损耗。

2.2 自适应光学技术

自适应光学技术以光学波前为控制对象,实时测量波前误差并进行补偿,保证接收口径光束能量的最大值,消除或者减少大气湍流的影响,其下的光学系统称为相位共扼式(常规)自适应光学系统,主要由波前传感器、波前控制器、波前校正器等部件组成。波前传感器由具备独立图像探测器的透镜组成,其作用时实时测量波前误差,将误差信息传送至波前校正器。波前校正器实质是每秒形变近千次的反射元件,主要由镜面背后的压电晶体所致,其作用之一接收控制系统传输的控制信号,在光路中改变、校正波前的形状和误差,输出校正后的光束波;之二是修复入射光的波前,提高信噪比;之三是根据波差信号整形出射光,减小大气折射率的影响,提升传输质量;其作用机制是与波前传感器形成回路,在波前控制器的控制下,若形成正确形状,传感器即会测量得平面波,证明镜面形变抵消大气扰动所致的波前误差,校正成功。波前控制器的实质则为一个具备高速、大容量的计算机系统,其作用是处理波前误差信息并转换为控制驱动信号,然后驱动波前校正器产生与畸变波前大小相等、符号相反的波前校正量,实时补偿因大气湍流扰动畸变波前。自适应光学技术系统可放置在接收端,使得光电探测器探测到的信号能量集中,有效解决大气湍流效应的影响。

3 大气光通信中发射器的配置讨论

大气温度不均一造成的湍流效应会导致例如光束弯曲、光束扩展、光束闪烁、成像跳动等问题,易增加接收端的误码率,严重时导致通信中断,消除湍流效应的手段之一是利用“孔径平均效应”减小接受光强的起伏状况,但是其要求光束到达接收端时的光束展宽度足够,对透镜尺寸提出了较高要求,通常利用分集技术消除或者减弱湍流效应,增加通信强度、质量和概率。于此,从发射分集角度做出多个发射器一个接收器的讨论。以下讨论中,均以各个发射机相互独立、互不影响、服从统一分布为

模型。

3.1 发射功率与发射器个数呈线性相关

现令一个发射器被接收端探测的概率为P,当有m个发射器时的探测概率为Pm,忽略每一个发射器小于接收端门限值,在联合条件下可满足通信概率的情形。使发射器个数保持在1~4个左右,经试验结果证明,如图1所示,当Xσ=0.01时,增加发射器的个数对通信概率的影响很小;当Xσ=0.1时,两个发射器比一个发射器的探测概率有明显增加,但继续增加发射器则影响不大,只会增加设备成本和复杂度。所以,在实际配置时,需根据通信系统的具体功能选择合适的发射器个数。

3.2 发射功率一定与发射器的关系

现令一个发射器被接收端探测的概率为P,当有m个发

图1 不同Xσ下不同发射器个数的通信概率

图2 总功率受限和不限情形对比图

射器时的探测概率为Pm,总发射概率为P总。经试验结果证明,如图2所示,当Xσ=0.1时发射的总功率变化和不变情况下通信概率变化情形,发射器个数依次也是1~4个左右,结论如下:一是当场强阈值比值大于0.5时,一个发射时的通信概率开始小于1,随着场强阈值的增加而剧烈减少;二是当场强阈值比值大于0.5后,多个发射的情况比一个发射时通信概率高,但是四个比三个的通信概率增加不明显;三是当总功率一定时,随着发射机个数的增加通信概率在减小,增加发射机个数只会使通信的概率减小,所以此种情况下不宜采用发射分集,可考虑采用接收分集;四是当总功率不受限制时,增加发射机的个数可使探测概率增加,并且最好选用2~3个支路。

参考文献

[1] 苏磊.无线光通信技术及其应用[J].光通信技术,

2008,26(4):22-25.

无线激光通信技术第7篇

关键词:机载激光雷达;电力线路设计;工程应用

作者简介:廖新育(1977-),男,江西崇仁人,绵阳电业局绵阳奥瑞特电力设计咨询有限公司,工程师;窦延娟(1985-),女,河北平乡人,绵阳天眼激光科技有限公司,工程师。(四川 绵阳 621000)

中图分类号:TM75  文献标识码:A  文章编号:1007-0079(2011)36-0148-02

一、概述

机载激光雷达(Airborne Light Detection and Ranging,简称airborne LIDAR)技术集全球定位技术、惯性测量技术、激光扫描技术及高精度控制体系于一体,通过主动向目标发射激光快速获取目标的三维信息。它集中体现了激光测距技术、高精度动态载体姿态测量技术、高精度动态GPS 差分定位技术和计算机技术的迅速发展,是近十年来摄影测量与遥感领域革命性的成就之一,也是目前最先进的三维航空遥感技术。[1]机载激光雷达系统源于1988-1993年间德国斯图加特大学将激光雷达测量技术与POS系统集成一体形成的空载激光雷达测量系统(Arkerman-19)。由于其能穿透植被叶冠、探测细小目标、可快速获取数据等特点,自上世纪90年代以来机载激光雷达技术迅速发展,目前世界上已有多个国家生产机载激光雷达设备,该技术的应用也越来越广泛。机载激光雷达技术在电力线路设计中的应用最近在我国电力建设过程中也呈渐长趋势。

二、系统组成及工作原理

目前世界上主要的机载激光雷达系统主要有Riegl公司的LMS-Q系列,美国Leica公司的ALS系列,德国Toposys的FALCON系列和HARRIER系列,加拿大Optech公司的ALTM系列(地形测量)和SHOALS系列(水深探测)等,结构各不相同,但主要由POS系统、激光扫描仪、控制单元组成,很多机载激光雷达系统也将数码相机集成在一起。

POS系统主要由全球导航系统(GPS)和惯性测量单元(IMU)组成,其中GPS连同地面基站GPS接收机实时动态测量飞行平台的位置,一般采用载波相位差分GPS技术、单点定位技术解算GPS数据;IMU实时测量飞行过程中平台的姿态,与GPS数据融合计算扫描仪的位置和姿态。

机载激光扫描仪一般采用半导体二极管和半导体激光器,具有高性能、高重复频率、大功率、窄脉冲等特点,波长范围一般在800-1600nm,常见的扫描方式有钟摆式、旋转棱镜式和光纤扫描式三种。

由于激光扫描仪测得的数据没有光谱信息,在机载激光雷达系统上同时搭载高精度的数码相机,在激光扫描仪扫描地面的同时拍摄地面影像,通过后数据处理可以得到测区的正射影像,可为激光雷达点云数据处理提供影像参考信息,与激光点云数据相互补充,提供更丰富的地表信息。

机载激光雷达系统包括多个组成部分,在工作时各组成部分之间需要通过控制单元高度协同,如在接受到一个激光脉冲信号时就需要同时记录返回信号的时间标记,由于GPS接收机的频率和IMU、激光扫描仪的频率各不相同,位置测量、姿态测量和激光测距不可能严格同步,这就需要借助时间标记信息内插出接收激光脉冲时刻的位置和姿态。中心控制单元一般采用导航、定位和管理系统严格同步的方式记录IMU角速度、加速度增量以及GPS位置、激光扫描仪和数码相机数据。

机载激光雷达系统在工作时通过激光扫描仪主动向目标发射高频率的激光,接收反射回来的激光,同时记录时间,通过发射激光到接收激光之间的时间计算出激光扫描仪到目标的距离,结合POS系统获取的平台位置和姿态数据即可计算出目标的三维坐标。

三、技术特点

机载激光雷达的特点主要有:(1)可以24小时全天候工作:激光雷达是主动探测,不受光照的影响,可以全天候工作;(2)能够穿透植被的叶冠,同时测量地面点和非地面点:激光波长较短,可以穿透植被叶冠,形成多次回波,获取的数据信息更丰富;(3)能够探测细小目标物体:激光的波长较短,能够探测细小的目标,如电力线,而传统的摄影测量和雷达都不能够探测到细小的电力线;(4)获取数据速度快:相对于传统摄影测量,机载激光雷达可直接获取目标的三维坐标,数据获取速度大大提高;(5)获取数据精度较其他航测技术要高。

四、数据成果

应用机载激光雷达技术采集数据,能够得到更丰富的数据成果。通过对点云数据的滤波处理的,可以得到高精度的DEM和DSM。尤其在我国西部南疆沙漠、青藏高原和横断山脉地区,气候恶劣,交通不便,一般测量技术无法完成测量工作,而应用航空摄影测量技术沙漠地带很难选择控制点,森林区域无法穿透植被获取地面信息。采用机载激光雷达技术,能够突破这些局限性,得到西部区域的地形图;通过对同时获取影像的正射纠正及镶嵌处理可以得到高分辨率的DOM;通过DSM和DOM的融合可以得到真实三维场景图;通过对点云数据的分类处理运算,可以得到三维的房屋、树木等地物;通过对激光点云数据的进一步处理,还可以得到树的高度分布图。

五、机载激光雷达在电力线路设计方面的优势

超高压送电线路是国家主干电网的重要组成部分,随着国家电力建设的加速发展,起建设速度也越来越高,目前其建设要求主要体现出以下特点。

(1)线路距离长,覆盖范围大;(2)安全可靠性要求高;(3)建设工期要求越来越短;(4)线路通道选择越来越困难。这些要求所使用的测量方法必须满足以下要求:数据获取周期短;数据精度高;能够获取大面积的三维地表数据;在通道狭窄地区地物分辨清晰。

机载激光激光雷达技术能够完全满足当前快速发展的电网建设对数据获取的要求,较传统测量技术相比,具有明显的技术优势,主要体现在以下方面。

(1)直接在数字高程模型、数字地面模型、数字正射影像等数据构建的高精度三维全景环境中进行快速、便捷的优化设计,包括线路路径、空间量测、风景带、农田、建筑物等的绕行、开挖方量自动计算、拆迁计算等,可以对选线区域的拆迁、工程量进行快速、准确、智能化评估、计算与分析,并做出最优决策。

(2)由于机载激光雷达获取的数据是三维的,能够在图上快捷方便地进行各种三维量测,满足电力线路设计对各种距离的苛刻要求,如树高、房高量测,安全距离量测等。

(3)通过机载激光雷达获取的DEM、DSM和DOM,可以实施获取选线区域的截面图,并能方便进行空间三维量测,减少了很多野外实地勘测工作,通过室内三维场景图选线与野外勘测的地形地物相差很小,大大减少了野外作业时间,提高了选线定位设计效率。

(4)成果数字化移交:应用机载激光雷达巡线获取的数据很容易建立真三维电网GIS系统。通过三维电网系统可以精确地掌握线路走廊内地物与线路的空间关系;设置植被基本生长参数,可模拟线路走廊内的植被作生长情况,模拟风险分析;还可以进行线路磁场干扰分析和安全范围分析,对不同电压等级的电网管理更科学。

(5)与传统摄影测量技术相比的优势:1)作业周期短,由于机载激光雷达技术不需要野外选择塔基点,极大地减少了野外控制测量及野外调绘的工作;2)能够直接获取目标的三维坐标,并可在数据成果中直接进行三维量测;3)用于电力线路优化设计的数据产品更加丰富,精度更高;4)优化线路路径,特别是可以精确的控制减少房屋跨越及房屋拆迁数量。

六、工程应用实例

在绵阳奥瑞特电力设计咨询有限公司总承包项目中国涡轮研究院输变电工程线路部分的电力选线工程中,我们采用动力三角翼飞机搭载的小型机载激光雷达系统进行数据的采集,通过后期快速的数据处理得到高精度的DEM和DOM,采用专门研发的选线软件进行电力线路的设计及优化,不仅提高了线路设计效率,缩短总承包周期,同时还在优化路径的过程中,减少线路转角次数,特别是大大减少房屋拆迁量(原传统选线需拆迁房屋7360平方米,现在需拆迁房屋940平方米,共减少6420平方米)。

在该工程应用中,我们根据地面GPS基站数据和机载GPS数据进行差分计算,得到高精度的定位结果,然后与IMU数据进行融合计算,得到LAS格式的激光点云数据。我们应用TerraSolid软件进行所有的数据后处理工作,包括点云数据的分类滤波(即从点云中分离出地面点、植被点、建筑物点、电力线点等)、DEM的提取、正射影像纠正及镶嵌、等高线的提取等,为电力线路勘测设计提供了丰富的地形数据产品。

在电力线路优化设计中,我们采用自主研发的三维电力线路设计软件,综合高分辨率的DOM和DSM/DEM得到真实场景图,可从不同视角观看设计线路周围地物状况,并且能够快速查看地形断面图、测量树高及房高,实现了在室内完成电力线路的设计优化工作。电力线路确定后,该三维电力线路设计软件能够半自动生成电力设计单位使用的平断面图,并且根据需要可自动生成风偏断面,便于线路设计人员进行排杆(塔)定位。图1即为在使用激光雷达技术后处理成的地形图上选定的电力线路路径。

七、结束语

应用机载激光雷达技术采集的数据进行电力线路选定线设计,数据获取速度快,数据产品丰富,包括高精度的DEM、DSM、高分辨率的DOM,同时还可将房屋、树木等地物自动提取出来,通过特定的三维电力选线软件,能够以不同视角查看真实三维场景图,对于线路的空间关系了解得更加明确,能够在室内完成电力线路的选定线设计及线路路径通道优化工作,同时能够准确地统计线路覆盖范围内的房屋及待砍伐植被。不足之处在于,在激光雷达采集的数据后处理过程中,由于低空飞行,每幅影像范围较小,所以总的测区范围内影像数量较大,导致在一定程度上影响了数据处理速度,这能通过后处理过程优化加以改善。但总的来说,在电力选线工程项目中应用激光雷达技术能够大幅度提高线路工程设计中的选定线工作效率,大大缩短设计周期,降低设计单位线路设计外业勘测成本,同时,极大程度地降低工程总投资。

参考文献:

[1]密威.机载激光雷达技术在电力线路勘测中的应用[J].科技咨询,2009,(19):5-8.

[2]蒙祥达,李新科.机载激光雷达技术及其在电力工程中的应用[J].广西电业,2007,(9):81-83.

无线激光通信技术第8篇

【关键词】光纤网络通信技术 关键技术 发展趋势

1 光纤网络通信技术的优点分析

1.1 抗干扰能力强

在日常生活中,我们常常可以遇到这样的情况:在接听或者拨打电话时,如果此时恰逢雷雨天气,往往会导致通信语音模糊不清甚至完全中断。或者电话机靠近电视机等设备的情况下,也会导致通信干扰的情况。而导致这些情况的直接原因,就是传统通信技术所依赖的电磁波容易受到环境电场、磁场的干扰。而光纤通信技术一改传统通信技术依靠电磁波的局面,采用了激光作为信息传输的载体。

1.2 传输距离远

传统通信技术特别是无线电通信技术,存在很强的信号衰减问题。也就是说,随着距离的加大,无线电波信号的衰减越严重,如果中间没有中继站的情况下,无线电信号就很难实现数百公里甚至数千公里的传输距离。但是,建设数量众多的信号中继站,不仅大大增加了通信的成本,还需要额外耗费大量的电能,这与新时期下可持续发展的理念是格格不入的。而光纤网络通信技术就不存在较大的信号衰减问题。其原因就在于,通信激光在光纤内几乎可以实现百分之百的折射,而不会因漫反射或者衍射而损失能量。目前,利用光纤网络通信的信息损耗值一般能控制在0.2分贝/km之内。当电信号的损耗值较低时,它传输的单位长度就相应地增长,也就是中继距离的增加。现在,中级距离己经超过了20km。而中继距离增加就意味着中继站数量的减少,系统运行的稳定性提高,通信系统的建设费用和维护费用也就越低。

1.3 容易施工,保密性强

一方面,光纤网络通信不像传统通信线缆那样笨重,它主要由玻璃纤维制成的光纤芯和外部涂覆层组成,不仅很细,而且很轻,同时柔韧性和抗拉伸性能都比较好,非常适合各种地形条件下的通信网络铺设。例如,沟通亚洲和北美洲的海底光缆就是非常典型的例子。如果在传统通信技术下,在广袤的太平洋上建设数以千计的中继站,几乎是不可能的事。而光纤网络通信技术就可以依靠几座减灾岛屿上的基站,实现洲际通信。另一方面,在传统通信技术条件下,信息的保密性是很差的。而信息泄露不仅可能造成重大的经济损失,特别是国防通信,一旦泄露还很有可能危及国家安全。而光纤网络通信技术的传输载体比较特殊,只有光纤包层和纤芯附近存在光波,同时用橡胶护套和金属材质防潮层保护光缆,就避免了光的泄露,加之光纤常埋于地下,更降低了光泄露的可能性,保护好光也就保护了信息的安全性.

2 光纤网络通信关键技术和设施分析

2.1 通信基站

基站是光纤网络通信系统的核心组成部分。我们知道,无论什么样的通信系统,都拥有成千上万甚至上亿个用户终端,光纤网络通信系统也不例外。而通信基站的最重要的作用,就是汇总各个客户端发出的通信信息,进行编码和加密后发送到目的地。举个例子,某一通信应用客户发出了“明天”这两个字的信息,在信息到达基站后,激光编码设备就会将它变成激光脉冲而通过光纤网络发送出去。同时,编码器可以根据数字编码规则,对信息进行加密。

2.2 解码基站

与通信基站一样,解码基站也是光纤网络通信系统的关键。顾名思义,解码基站的作用就是对加密信息进行破解。接着上文中的例子,解码基站就是将激光脉冲转换成数字编码,以便于进一步的破译,也即将“明天”的激光脉冲重新翻译成“明天”的数字代码。因此,解码基站是光纤网络通信系统的另一个核心。在系统的建设过程中,解码基站应当位于用户集中地区的附近。而且,由于单位时间内需要处理大量的激光脉冲信息,因此解码器应当基于大型电子计算机来开发。

2.3 复用技术

话题讨论到这里,很多读者可能会问,如此纤细的光纤,是如何容纳数以万计的通信信息呢?其实,答案与铁路的运行调度颇为类似:一条铁轨同时运行千百列的列车,就是依靠调度系统的调度作用。而对光纤网络通信技术来说,复用技术就是起到了这种“调度”作用,使得同一条光路能够容纳大量额信息。换句话说,复用技术是通过多信道系统增加传输介质的信息容量,提高光纤宽带的利用率。时分复用、波分复用、频分复用、空分复用以及码分复用是其五种常用的复用方式,其中,应用时间最长、应用范围最广的波分复用方式,大大地提高了信息的传递量,从而提高了光纤宽带的利用率。

2.4 色散补偿技术

虽然光线网络通信技术的信号能量损失非常小,但是损失小并不意味着没有损失。根据研究,经过数百公里的传输后,激光信号一般会衰减百分之三十,而且还可能出现乱码,导致信息失真。在这种情况下,就需要利用色散补偿技术来处理。色散补偿技术是为了扩大中继距离,维护信息系统的稳定性。同时,兼顾到插入损耗合理的技术措施,使输出端的电信号足以保证跨距、速率。

3 我国光纤网络通信技术的建设与发展

光纤网络通信系统出现以后,我国相关领域的研究者敏锐地认识到了这种通信技术的光明前途和优点,并认可了这种新型通信技术的可靠性。因此,在国家的扶持下,我国投入了巨大的人力物力对光纤网络通信技术进行了系统性的研究。故而,进入新的发展时期以来,我国光纤网络通信技术的发展速度是非常快的,而且结出了累累硕果。但是,从整体情况看,受限于我国技术上的限制,光纤网络客户端微型化不足,而且应用价格也不菲,从而在很大程度上限制了这种技术的应用。

4 结束语

总而言之,光纤网络通信技术代表了当代通信技术的前端水平,我国应积极进行理论和技术研究,尽快完成通信网络的光纤化改造,从而提高社会现代化水平。

参考文献

[1]郭爱煌,傅君眉.基阵列波导光栅的波分复用器件[J].光通信技术,2011,25(4):296-297.

[2]王影.光纤网络通信技术的探讨[J].信息科技,2013(1).