首页 优秀范文 智能物流的特点

智能物流的特点赏析八篇

时间:2024-01-05 14:57:05

智能物流的特点

智能物流的特点第1篇

Abstract: Internet of things, large date, cloud computing and other generation of information technology are development, marking the coming of intelligent logistics. In order to reduce costs, improve efficiency and enhance customer satisfaction, the article proposes path optimization, visual distribution and intelligent analysis to optimize the terminal distribution, which based on the characteristics of the intelligent logistics and status quo of distribution, and then build a intelligent distribution information platform+joint distribution center system to integrate the online and offline resources to solve these problem.

Key words: intelligent logistics; E-commerce; terminal distribution

电子商务末端配送是物流企业与终端客户接触的唯一阶段,直接影响着物流服务能力与客户的满意度,在整个物流过程中起着至关重要的作用。根据国家邮政局公布的数据,2016年1月到6月,全国快递服务企业业务量累计完成132.5亿件,同比增长56.7%,再创新高。但在快递包裹量急速增长的同时,由于电子商务末端配送现有模式的诸多弊端,造成延迟到货,包裹破损、丢失,顾客投诉率高,快递员服务差等问题。如何提高电子商务末端配送效率,降低末端配送成本,同时提升顾客满意度,成为电子商务末端配送急需解决的问题。物联网、大数据、云计算等新一代信息技术在物流领域的运用,迎来了智慧物流时代,有望改善电子商务末端配送的现状,解决电子商务末端配送的诸多问题。

1 智慧物流时代的特征

智慧物流是指利用物联网、云计算、大数据等新一代信息技术,使物流各个环节具有系统感知、全面学习与分析、自动化解决问题等功能,涉及智慧仓储,智慧运输,智慧装卸、搬运、包装,智慧配送,智慧供应链等方面。智慧物流时代具有以下几方面的特征。

1.1 物流服务个性化

智慧物流时代,顾客对物流服务的需求会由于其购买物品类型等客观因素及便利、心理等主观因素,向个性化方向发展。物流企业不仅仅需要满足顾客的收送货需求,更需要提供高度可靠的、特殊的、额外的服务,如通过物流APP,顾客可以通过LBS(定位服务)查询、定位到附近网点取件,同时物流APP还提供一键转寄、服务点代收等功能,从而提供个性化服务。

1.2 物流运作智能化

随着人工智能技术、自动化技术、物联网、大数据、云计算等技术的运用,物流运作过程的智能化水平不断提高。物流运作智能化主要体现在以下几个方面:(1)通过智能分单系统和智能分拣设施,实现物流分拨中心的智能化分类分拣;(2)通过大数据预测、?稻萃诰颍?找出特殊区域内包裹量的变化规律,智能化设置和调整物流配送中心、分拨中心等网点位置;(3)通过大数据分析不同顾客的购买习惯、收货习惯、收货时间等信息,智能化安排快递的配送模式和时间;(4)通过无人机、无人车、机器人等先进手段,实现智能化末端配送。

1.3 物流信息资源共享化

智慧物流时代,为了降低物流成本,提高物流效率,物流信息资源将越来越集成化,共享化。智慧物流时代下,通过搭建智慧物流信息平台,利用RFID视频技术、EDI电子数据交换技术、物联网、云计算、数据仓库和数据挖掘等技术,实现用户、交易、商品、企业等信息的集成、整合和优化,对整个物流过程实时追踪、安全监控和管理,从而在统一的物流平台上实现多方信息资源的共享。

2 智慧物流在我国电子商务末端配送的运用现状及存在的问题

2.1 智慧物流在我国电子商务末端配送的运用现状

目前,智慧物流在我国电子商务末端配送中已得到了一定的运用。2015年7月,京东利用云技术和大数据等新一代信息技术,开发青龙电子签收系统,通过POS机电子签收快递,实现简单图片管理系统,并与京东云打通,将电子签名接入国家认证,打通物流中的各个环节,包括末端配送环节,从而最先实现整个B2C流程电子化,极大提高了运作效率。2015年双十一,菜鸟网络利用大数据预测和协同机制,通过预警雷达监测系统,把交通拥堵、订单、发货等信息组合成完整的数据链,预测不同路线的包裹量,并协调资源,极大提高全国物流快递处理能力,2.4亿个包裹在近7天内被送到消费者手中,与2014年双十一的包裹配送花了近16天相比,效率足足提高了一倍以上。2015年12月,同城货运一号货车与物流网络平台壹米滴答达成合作,构建“骨干网络+同城配送”的物流运营新模式,实现末端配送从干线货运、区域货运到同城货运的上下游无缝对接。2016年1月,以物联网、云计算、大数据等技术为支撑,山东开始推进智慧物流配送体系的建设,以实现物流各个环节系统感知、全面分析、及时处理和自我调整等功能。2016年5月,菜鸟网络启动“新绿洲”项目,联合搭建自提柜服务信息平台,打通物流末端配送的信息流,实现智能快递柜间快递信息的拼接,提升消费者代收包裹的体验。

2.2 智慧物流在我国电子商务末端配送存在的问题

上述企业虽然利用新一代信息技术对电子商务末端配送进行了改进,并取得了一定的成效,但大多数是从技术突破,智慧物流在我国电子商务末端配送中仍然存在诸多问题:(1)成本高。顾客不便导致的二次配送、末端配送网点的建设以及庞大的快递员数量等,都会提高末端配送的成本。据调查,末端配送成本占整个物流成本的30%以上,成本高昂。(2)效率低。社区单位的管理、客户取货时间不定等原因,都会造成包裹投递困难,导致快递公司的配送效率低。(3)服务质量差。快递的延迟到货、包裹的破损丢失、高峰期末端网点的爆仓以及虚假签收等一系列问题层出不穷,导致末端配送服务的质量差,客户满意度低。(4)资源缺乏整合。不同物流企业都会在同一区域建立各自的分流中心,利用各自的人力、物力等资源,为自己的客户进行末端配送服务,这种各自为战的局面,除了造成资源的重复和浪费,增加成本,降低效率之外,还会引起交通拥堵、环境污染等一系列问题,无法形成良好的生态圈。

3 智慧物流时代电子商务末端配送优化的思路

新一代信息技术的研发与应用是智慧物流的关键。针对目前电子商务末端配送成本高、效率低、服务质量差、资源缺乏整合等问题,可利用物联网、云计算、大数据等技术从车辆路径、可视化配送、智慧分析三方面对现有电子商务末端配送进行优化,充分发挥智慧物流时代的优势。

3.1 优化车辆路径

车辆路径问题(VRP)是指配送中心的一个车队向一定数量的客户运送物品,在满足客户需求的同时,如何组织适当的行车路线来满足路程最短,或成本最小,或耗费时间最少等约束条件的问题。智慧物流时代,利用物联网、大数据、云计算等新一代信息技术,对车辆、交通、拥堵等信息进行实时监控,由系统自动计算安排出配送车辆最合理的优化路线,使得配送路线和时间最合适。通过对电子商务末端车辆配送路径的优化,能在最快的时间内将物品配送至客户,提高配送效率的同时,节约资源,减少交通拥堵。

3.2 优化可视化配送

可视化配送是一种对物流信息的实时跟踪功能,通过车辆定位、物品监控、在线调度等手段让顾客及时了解所购物品的物流信息。目前这种可视化配送服务虽已有所运用,却仍处于初级阶段,只能提供一些节点信息,信息显示还会延迟,而且缺少末端配送路径上详细信息的显示。智慧物流时代,将物品的可追溯网络融入万物相连的物联网中,让客户看到送货的全过程、送货的具体位置,并通过大数据、云计算等新一代信息技术,精准地计算送达时间等。通过对电子商务可视化配送的优化,能极大改善物流服务质量,提高顾客满意度。

3.3 优化配送模式的智慧分析

终端客户分布范围广而且分散,需求差异化等特点决定了末端配送多种模式并存的状态。目前主要有三种末端配送模式:上门送货模式、自助提货模式、智能提货柜模式。智慧物流时代,为了使快递员在最短的时间以最优的成本将快递送达顾客,必须对配送模式的智慧分析进行优化,通过对顾客购物习惯、购买商品特点等特征迅速分析出适合不同顾客的终端配送模式。比如,老年人、退休人员、家居办公族或专职太太比较适用于上门送货模式;学生群体或在职人员比较适用于自助提货模式和提货柜模式;大件物品适用于送货上门模式;上夜班人员适用于提货柜模式,等等。智慧物流时代对配送模式的智慧分析还可对订单页面进行优化,订单页面可提供多种配送模式的选择:送货上门+时间点、自助提货+提货网点、提货柜+柜点地址等,由顾客自主搭配,选择所需的配送模式,以满足顾客的差异化需求,提高企业差异化服务能力。通过优化电子商务末端配送模式的智慧分析,能极大减少二次配送,降低物品的损坏率和丢失率,提高末端配送效率。

4 智慧物流时代电子商务末端配送优化方案及运作流程

4.1 优化方案

根据上述优化思路,智慧物流时代电子商务末端配送的优化方案是建立一个由智慧配送信息平台和共同配送中心共同构成的末端配送系统,以实现线上整合信息资源与线下整合实体资源的全面对接,最大程度地降低配送成本,提高配送效率。

4.1.1 智慧配送信息平台。智慧配送信息平台是在互联网技术基础上,利用物联网、大数据、云计算等新一代信息技术让电商企业、物流公司、顾客等多方主体信息进行互联互通、资源共享的信息平台,该平台通过对系统积累数据的分析、挖掘,为客户提供最优的配送方案。

利用物联网技术,智慧配送信息平台涵盖了车辆信息、交通信息、地理信息、订单信息、顾客信息及快递员信息等;利用大数据、云计算等技术分析、挖掘、协调、预测所存储数据,实现路径优化、可视化追踪、智慧分析等功能。而且智慧配送信息平台还提供了客户对快递员的评价功能。首先对所有快递员进行实名制验证,防止犯罪分子伪装成快递员从事犯罪活动,以保证顾客安全。其次,顾客可以从多方面对快递员进行评价,包括投诉事项、服务态度、服务质量等。最后,系统会定期对每个快递员进行审核和评估,利用奖惩制度来规范快递员的行为。

4.1.2 共同配送中心。共同配送中心是对线下实体资源的整合,拥有完整的配套物流设施、设备和种类、数量众多的配送车辆,专业的作业人员,严谨的作业制度以及作业程序等。各物流公司将各自的包裹快递集中到特定区域内的共同配送中心,进行集中分拣、拼装、搬运和配送。通过共同配送中心集中资源,从而实现智能分拣、智能调度、配载以及路径优化、可视化追踪、智慧分析等功能。多个企业共同使用共同配送中心,能避免重复建设,极大提高物流设备设施的使用效率,降低配送成本。

4.2 运作流程

由智慧配送信息平台和共同配送中心共同构成的电子商务末端配送系统的具体运作流程如下:(1)各物流分拨中心将货物运送至共同配送中心,并将信息反馈到智慧配送信息平台。(2)智慧配送信息平台通过对存储的车辆、交通、地理、订单等信息,进行索引、抓取、处理、分析、整合等一系列智能化操作,制定出优化的末端配送计划。(3)根据制定的优化配送计划,共同配送中心对所有包裹快递集中智能分拣、调度车辆、车辆配载,进行共同配送。在这个过程中,可以将同一位顾客在不同网站上购买的商品分拣一起,进行集合配送。(4)通过智慧配送信息平台的智能分析功能,在送货上门、智能快递柜和自助提货点三种模式中确定顾客最适合的末端配送模式,同时确定相应的送货时间段或末端配送网点。运用共同配送或者集合配送将包裹直接送达终端客户,或由客户到相应的配送网点自助取货。(5)通过终端客户签收、对快递员评价和物流服务进行评价和建议。相应的信息直接与智慧配送信息平台对接,再循环应用于下一批的配送。

智慧物流时代电子商务末端配送系统运作如图1所示:

4.3 优势分析

由智慧配送信息平台和共同配送中心共同构成的电子商务末端配送系统具有以下?赘鲇攀疲海?1)结合共同配送,将多家企业联合起来,整合和优化网点资源、车辆资源、线路以及终端配送点等,减少甚至消除资源的重复浪费。(2)通过智能分拣可以实现组合配送,将同一个顾客的不同商品整合一起配送,提高配送效率的同时,能极大便利终端顾客。(3)能有效结合可视化追踪、快递员评价功能,极大提高顾客满意度。(4)结合路径优化、智慧分析,以及共同配送,能极大提高物流配送效率,降低末端配送成本。

智能物流的特点第2篇

关键词:煤电智慧供应链;华电集团北京燃料物流有限公司;模式创新

一、煤电供应链基本架构

煤电供应链主要包括供应链上游的煤炭资源、煤炭开采设备商、煤矿生产企业,供应链供应链中游包括所有的运输、中转、储存等物流企业环节,下游则是所有的煤炭用户,包括电力企业、冶金、化工、建材等企业。其主要节点企业为煤炭生产企业和火电发电企业。电力作为国民经济的基础产业,在国家的经济运行中起着十分重要的作用。煤炭生产企业是以地下煤炭资源为依托的资源开发型企业,80%左右通过火电企业转化为电能。电和煤均为国民经济的基础产业,在供应链上具有相当高的相关性和依存度。

煤电供应链组织结构如图1所示。

二、煤供应链管理特点

煤电供应链管理以煤炭消费客户为中心,通过煤炭生产与火电企业间的资源优化配置,基于社会网络结成战略联盟,利益共享、风险共担。在煤炭生产企业与电厂终端用户需求之间,连接港口、铁路等物流活动,集成商流、资金流、信息流,通过配煤加工、库存管理,提供标准化产品和个性化解决方案,实现从坑口到炉口之间价值逐级增加,提升客户满意度。

煤电供应链有其独有的行业特点:

(1)供应链物流管理复杂。煤电供应链物流物理距离长、物流方式复杂,涵盖了皮带、汽车、火车、轮船多种运输方式。

(2)供应链节点企业复杂。煤电供应链节点多,并且各个节点企业的权属归不同的行业产业主体,包括个体户、国有企业等各个行业的多种性质不同的合作伙伴,在客观上加大了各节点间管理协作的难度和复杂性。

(3)煤电价格管理矛盾突出。煤炭价格由国家计划调节和市场供求关系双重决定,电能上网电价格由国家行政刚性控制,两者缺乏市场化调节功能的联动机制和制度安排,导致在煤价上涨与下降之时,电价调整严重滞后,煤电价格机制错位运行,不利于煤电供应链的运行。

(4)煤电仓储管理矛盾突出。煤炭生产与销售可以短暂库存,而电能生产与销售同步运行,无法存储,客观上供应链存在煤炭与电力生产销售节拍的矛盾。

(5)煤电供应链协同落后。由于煤电供应链点多、线长、面广、网大、人杂,供应链管理的更需要高度协同,但恰恰这也给供应链协同带来了空前的难度。

三、智慧供应链诞生发展

“智慧供应链”是结合物联网技术和现代供应链管理的理论、方法和技术,在企业中和企业间构建的,实现供应链的智能化、网络化和自动化的技术与管理综合集成系统。这一概念由复旦大学罗钢博士在2009年上海市信息化与工业化融合会议上首先提出。

传统供应链的发展,技术的渗透性日益增强,很多供应链已经具备了信息化、数字化、网络化、集成化、智能化、柔性化、敏捷化、可视化、自动化等先进技术特征。在此基础上,“智慧供应链”将技术和管理进行综合集成,综合集成供应链理论、方法和技术,指导现代供应链管理与运营的实践。

“智慧供应链”与传统供应链相比,具备以下特点:

(1)智慧供应链技术复合创新。与传统供应链相比,在智慧供应链的语境下,供应链管理和运营者主动吸收包括物联网、互联网、人工智能等在内的各种现代技术,主动将管理过程引入新技术带来的变化。

(2)智慧供应链可视移动化。与传统供应链相比,智慧供应链更倾向于使用可视化的手段来表现数据,采用移动化的手段来处理供应链运营问题。

(3)智慧供应链智能人性化。与传统供应链相比,在主动吸收物联网、互联网、人工智能等技术的同时,智慧供应链更加系统的考虑问题,考虑人机系统的协调性,实现人性化的技术和管理系统。

四、煤电智慧供应链的实践探索

近年来,按照国家供给侧改革的总体部署,“去产能”系列政策持续发力,煤电供应链的煤炭企业和火电企业的生存发展竞争压力越来越大。煤电智慧供应链的管控模式成了煤电供应链核心企业增强供应链核心竞争力的必然选择。

煤电智慧供应链管理就是充分结合煤电供应链的管理特点,加强物联网技术、大数据技术、互联网技术和人工智能技术等各种现代技术在供应链中科学耦合,实现供应链业务运营和金融产品的管理创新,达到供应链运作管控协同、资源高度共享、交易成本最低的供应链战略共赢的供应链管理效果,提升供应链的整体核心竞争力。

煤电供应链中的先知先觉企业,面对竞争环境的压力,大胆创新,纷纷采用煤电智慧供应链管理,取得了卓有成效的管理效果,值得煤电供应链中的关键节点企业学习借鉴。

华电集团北京燃料物流有限公司是华电集团煤电供应链燃料物流管理的专业化公司,公司发挥集约化、规模化管理优势,抢抓机遇,通过强力整合华电集团内外部煤炭资源、物流资源、客户资源、信息资源、金融资源,加强战略协同和精益管控,构建基于大数据的物流、商流、信息流、资金流“四流合一、管控精益”的智慧供应链服务与管控电子商务平台,建立内外部一体化的互联网+煤电智慧供应链战略管控创新模式,燃料物流综合成本同比大大降低,极大地提升了华电集团战略协同核心竞争能力,开创了我国煤电智慧供应链实践的先河。

参考文献:

智能物流的特点第3篇

关键词:自动化立体仓库系统;AS/RS;智能化;系统架构;功能模块

中图分类号:TP273.5

自动化立体仓库系统(AS/RS,Automated Storage and Retrieval System)主要由高层立体货架、巷道式堆垛机、地面搬运机械设备等硬件设备,以及计算机管理与监控系统组成。由于具有很高的空间利用率、很强的入出库能力、采用计算机进行控制管理而利于企业实施现代化管理等特点,已成为企业物流和生产管理不可缺少的仓储技术,越来越受到企业的重视。

智能化AS/RS是在传统AS/RS基础上增加了智能模块,可以在任务调度、货位分配、队列优化过程中,根据任务调度原则、货位分配策略、队列优化目标以及相应的约束条件,并建立相应的数学模型采用智能算法求解,获得最优解,提高自动化立体仓库系统的运行效率。

1 AS/RS系统构成

自动化立体仓库主要由物料储存系统、AS/RS出入库系统、AS/RS管理和监控系统三大系统组成[1-3]。

(1)物料储存系统:由立体货架的货格、物料承载装置(物料包装、托盘、周转箱等)组成。物料安排摆放规则整齐的保存在物料承载装置里,将物料承载装置保存于货格中,形成了完成的储存系统。

(2)AS/RS出入库系统:该系统承担货物存取、出入仓库的功能,通常由巷道堆垛机、出入库输送机、装卸机械等组成。巷道堆垛机是在高层货架的窄巷道内作业的起重机,可实现沿轨道行进、垂直起降和货叉伸缩三种运动,用于从两侧货架的任何货位上自动存入或取出货物。出入库输送机可根据货物的特点采用传送带输送机、轧辊输送机、链传动输送机等,主要将货物送到堆垛机上下料位置和货物出入库口。装卸机械承担货物出入库装车或卸车的工作,一般由行车、吊车、叉车等机械组成。

(3)AS/RS管理和监控系统:由客户机、中央控制计算机和电控系统组成。AS/RS管理和监控系统不仅要管理和分析立体仓库的物料信息、储存状况、仓库运行日志,还要可以监控立体库实时运行状态,及时调度立体仓库的可配置资源。

2 智能化AS/RS系统结构及流程

2.1 系统架构

自动化立体仓库是集物流学科,控制学科和计算机学科相结合的综合性系统、自动化立体仓库管理与监控系统应用的方式可分为集中式、分离式和分布式,目前国际上的大多数项目都是采用分布式的系统。

如图1所示,自动化立体仓库管理与控制系统(WMOS,Warehouse Management and Operation System)架构通常分为应用层、服务层、控制层、设备层四个部分组成。从功能层次上看,可以将自动化立体仓库系统分为3个层次:管理层、监控层、执行层[4]。

管理层是计算机管理系统,具有系统设置、系统信息维护、产品信息维护、出入库业务、存查询统计等功能。管理层主要是负责立体仓库的作业调度、物资分布、队列优化、故障处理等工作。监控层是自动化立体仓库系统的重要组成部分。它根据来自管理层的指令来控制物流设备,完成管理层传输的任务;另一方面监控层以动画的形式,实时监控堆垛机的状态,将堆垛机当前的信息反馈给管理层,为工程师进行任务调度提供参考。执行层由嵌入PLC的堆垛机构成。堆垛机中的PLC接收监控层的指令,根据指令执行各种操作。

图1 自动化立体仓库管理和监控系统和功能层次图

由上述的系统架构可以看出管理层是智能化AS/RS的核心,如图2所示,其智能化的实现主要由四个重要模块组成:作业任务智能分配模块、物料分布智能处理模块、作业队列/路径智能优化模块、故障处理模块。各个模块在不同类型的作业流程中所起的作业也各不相同。

(1)作业任务智能分配模块:根据待出入库的物料在各存储单元储存状况,合理分配出入库作业任务,以平衡各存储单元的工作负荷,减少作业任务等待执行时间。

(2)物料分布智能处理模块:根据物料的出入库频率、物理特性、在库分布现状等,合理分配出入库库位,以提高存储单元的出入库效率。

(3)作业队列/路径智能优化模块:根据出入库系统性能参数,优化队列序列或者堆垛机的作业路径,以减少堆垛机的作业时间,提高仓储效率。

(4)故障处理模块:此模块主要是处理逻辑调度故障,而非机械故障和通信故障。对逻辑故障及时处理,并追溯故障发生的根源。

图2 智能化AS/RS关键模块

图3 智能化AS/RS体系结构

如图3所示,智能化AS/RS的体系结构由AS/RS智能调度的方法和AS/RS库存控制方法组成。自动化立体仓库的智能调度方法首先是依据具体仓库的规模、结构、出入库系统规格、任务分配策略、物资分布处理策略等信息,利用层次分析法原理确定适用的智能调度方案。其次,按照智能调度方案,第一步从仓库全局层面分配作业任务,将出入库任务分配到具体的存储单元。第二步针对具体储存单元,进行出入库货位分配。第三步,按上一步中货位分配的结果对每个存储单元批作业队列进行优化。智能调度方法是一个分布式调度方法,从全局的任务分配到具体储存单元的货位分配和队列优化。

2.2 智能化AS/RS系统的主要流程

(1)出入库作业流程。如图4所示,在出入库作业流程中,根据组盘表中记录的待入库物料详情以及出库单中待出库物料详情,分析立体库中相应物料在各个存储单元的储存情况,分配任务到各个储存单元。

各个存储单元获得相应的出入库作业任务后,根据本存储单元的物资分布情况,物资分布智能处理模块给每个作业任务分配合理的货位。

作业队列/路径智能优化模块给存储单元中等待执行的批作业任务赋予初始的优先等级,队列优化模块可以根据优化目标对批任务队列进行优化,提高仓储效率。

图4 出入库作业流程

(2)盘点作业流程。所谓盘点是指为确定仓库内现存物料或商品的实际数量、品质状况、存储状态的清点,是物料管理工作的控制反馈过程。

盘点作业模式有全局盘点、随机盘点两种模式。全局盘点具有盘点规模大,盘点周期长,单次盘点消耗资源多,影响生产等特点。随机盘点具有盘点规模小,盘点周期短,单次盘点消耗资源少,影响小等特点。鉴于随机盘点的特点,随机盘点根据盘点规模大小,可以多次盘点提高仓库的有效利用率,提高仓储数据一致的水平。在年终统计在库物资详细报表时需要对仓库进行全局盘点。

图5 盘点作业流程

盘点作业流程如图5所示,盘点作业涉及物资供应部门、生产部门、仓库管理部门、销售部门等众多部门,所以提高盘点作业效率,节省盘点作业时间,降低对生产的影响。

(3)倒库作业流程。如图6所示,倒库作业的重点是需要倒库的库位筛选。物资分布智能处理模块根据物料相对集中的要求将同种物料集中存放,挑选出需要移动的库位。确定好倒库库位后,通过作业路径优化模块明确倒库库位的作业序列,形成一条完整的倒库链,减少堆垛机空载时间,提高作业效率。

图6 倒库作业流程

3 小结

自动化立体仓库是一个离散的、动态的、多因素、多目标的复杂系统,对AS/RS的智能化管理是复杂的系统优化问题。传统的方法求解过程不仅时间较长、成本较高,而且很难求得最优解。将现代智能优化理论与AS/RS应用相结合,可以提高空间利用率及仓储管理水平,降低劳动强度,提高物料调节水平,加快储备资金周转,为企业的生产指挥和决策提供有效的依据[5]。

本文给出了智能化AS/RS系统的架构、关键处理模块包括作业任务智能分配模块、物资分布智能处理模块、作业队列/路径智能优化模块、故障处理模块和智能化AS/RS的几种常见的作业流程,并对其进行了深入的分析,以期对智能化AS/RS系统的相关研究起到一定的借鉴作用。

参考文献:

[1]张欢欢.自动化立体仓库的若干关键技术与仿真[D].浙江:浙江大学,2008.

[2]刘昌祺,董良.自动化立体仓库设计[M].机械工业出版社,2004,05.

[3]徐正林,刘昌祺.自动化立体仓库实用设计手册[M].中国物资出版社,2009,03.

[4]陈传军.自动化立体仓库智能调度系统研究[D].北京:北京机械工业自动化研究所,2006.

智能物流的特点第4篇

继“中国服装行业供应链与物流技术研讨会”、“中国快速消费品供应链与物流高峰会”、“中国物流装备产业发展大会”之后,“中国制造业供应链与物流技术研讨会”将成为《物流技术与应用》杂志倾力打造的又一精品会议,并将持续举办。

中国作为制造业大国,制造企业的经营管理和技术水平较之以往显著提高,但其物流发展却相对滞后。可喜的是,随着工业4.0的影响,《中国制造2025》的出台,推动制造业的升级发展已经成为政府和行业的共识,而物流作为贯穿产品整个生命周期的重要活动,其优化升级需求不断增加,制造企业对物流的关注度上升到新的阶段,

正是在此背景下,《物流技术与应用》杂志以“智能制造与智慧物流”为主题,于3月17~18日在沈阳召开了“2016中国制造业供应链与物流技术研讨会”。本届大会由沈阳新松机器人自动化股份有限公司协办,得到了业界的积极响应:来自华为、卡西欧、上汽、益佰制药、SEW、方太等制造业代表企业,安吉、中世国际等供应链物流企业,以及昆船、今天国际、普天等物流技术装备企业的百余位代表汇聚一堂,探讨在新的时代背景下制造企业的物流升级优化之道:

共话智能制造与智慧物流

本届大会精心设置“解密智能工厂”与“聚焦智慧物流”两大版块,通过主题演讲及互动讨论.探讨智能工厂的建设与智慧物流的实施。

本届大会主持人、《物流技术与应用》杂志执行主编江宏在致辞中表示,《中国制造2025》明确将“智能制造”作为中国制造业的发展方向,实现智能制造是一项长期任务,现阶段要做好制造业数字化普及和智能化试点示范工作。而智能制造离不开智慧物流的支撑:在当前经济增速放缓的情况下.制造企业面临越来越大的成本上升压力,特别是身处“互联网+”时代,中国制造业亟待从技术、管理、商业模式等多个方面进行调整,其中包括供应链优化和物流自动化、信息化、智能化改造提升。

沈阳新松机器人股份有限公司物流与仓储自动化事业部总经理王家宝先生紧随其后致辞。新松公司作为国内机器人第一股,长期致力于包括各类型机器人、以及自动化物流系统和AGV系统在内的数字化智能高端装备的研发制造,目前正在向数字化智能工厂整体解决方案提供商迈进。

沈阳市浑南高新技术产业开发区寿波处长以《提升智能装备产业水平,带动地区经济快速发展》为题的演讲,介绍了当地鼓励高端制造业发展的产业政策,体现出政府部门对制造业转型升级给予的支持,给企业带来更多的信心。

随后,新松机器人高端装备与3D打印技术事业部总经理助理张军宝、中国仓储协会副会长王继祥、法布劳格物流咨询(北京)有限公司总经理张芸、新松智能移动机器人事业部副总经理王玉鹏、山东现代物流供应链管理研究发展中心主任段沛佑、全面库存管理咨询独立顾问程晓华、北京机械工业自动化研究所物流中心副主任吴双,分别以《数字化车间,制造业的未来》、《CPS时代智慧制造与智慧物流变革》、《转型升级中的制造业物流优化》、《移动机器人在智能制造与智能物流中的应用》、《“互联网+”T业物流发展模式探讨》、《制造业库存控制技术与策略》、《现代物流在传统制造业的创新发展与应用》为题进行了全面的讲解,就如何打造数字化工厂,智能制造与智慧物流的发展方向,物流管理在生产制造过程中的重要性,以及如何优化物流促进制造业的转型升级并实现提高效率、降低成本等多方面内容进行了深入的分析。

除了主题演讲,大会还围绕智能工厂和智慧物流设置了两大主题互动论坛,吸引了台上台下嘉宾的热烈互动,将大会气氛一次次推向高潮。

为了推广先进技术、促进创新应用、引导行业发展,大会举办了“2016中国制造业供应链与物流技术研讨会荣誉评选颁奖仪式”。此外,大会还组织参观了世界首个以机器人生产机器人的数字化生产车间――新松“智慧工厂”,近距离了解中国式“智能工厂”的建设。

智能制造离我们有多远?

《中国制造2015》指明了“智能制造”发展方向,国家明确要求整合财政专项资金重点支持关键领域发展,大量的资金和资源正在向智能制造领域加速汇集。那么,中国式智能工厂究竟什么样,智能制造离我们有多远?这一话题成为本届大会关注的焦点之一。

据王继祥副会长介绍,智能制造是一种在CPS(信息物理系统)基础上由智能机器和人类专家共同组成的人机一体化智能系统,在制造过程中能进行分析、推理、判断、构思和决策等智能活动:智能制造把制造自动化的概念扩展到柔性化、智能化和高度集成化。《中国制造2025》的技术主线就是在“两化”融合的基础上,推动云计算、大数据、物联网等新一代信息技术在制造业中的应用,推进制造过程智能化。智能制造是从资源驱动变为信息驱动,随着新一代信息技术的发展,工厂车间内越来越多功能强大的智能设备将以无线方式实现与互联网或设备之间的互联,由此衍生出物联网、服务互联网,实现信息驱动下的产品制造,体现出智能制造的价值――科学地编排生产工序,提高生产效率,实现个性化定制生产,节省能源消耗等。

张芸指出,从本质上讲,工业4.0包括将虚拟网络一实体物理系统技术一体化应用于制造业和物流行业,以及在工业生产过程中使用物联网和服务技术。这将对制造业的价值创造、商业模式、下游服务和工作组织产生影响。信息物理系统(CPS)强调物理过程与信息间的反馈,以信息物理生产系统CPPS为模型构建智慧工厂或者数字化工厂。

有观点认为,尽管智能制造的概念非常火爆,但是目前包括提出工业4.0的德国在内,全球并未真正建成具有工业4.0特征的智能工厂。张军宝认为,我们离智能工厂还有一定的距离,目前大多数工厂最多只是实现了生产线的智能化,进入数字化车间的发展阶段。数字化车间,从广义上来讲,指以制造产品和提供服务的企业为核心,由核心企业以及一切相关联的成员(包括核心制造企业、供应商、软件系统服务商、合作伙伴、协作厂家、客户、分销商等)构成的、使一切信息数字化的动态组织方式;狭义的数字化车间是指,以制造资源(Resource)、生产操作(Operation)和产品(Product)为核心、将数字化的产品设计数据,在现有实际制造系统的虚拟现实环境中,对生产过程进行计算机仿真优化的虚拟制造方式。据此张军宝认为,现阶段中国更多落地的是数字化工厂及数字化车间。

上海汽车进出口有限公司物流规划经理赵子龙也基本认同这一观点,他指出,智能化有别于信息化、电子化,它不仅仅是自动化,还应该具备自主分析、判断、执行等能力。从目前中国制造业的发展情况以及政策支持力度来看,我们有希望迎头赶上国外的发展脚步,但是需要相当长的一段时间。而具有丰富物流咨询经验的张芸给了这段时间一个具体的数值――十年:她甚至认为,十年后智能工厂将过剩。

智慧物流碰撞火花

毫无疑问,实现智能制造肯定离不开智慧物流,围绕这一话题,与会嘉宾从多个角度进行了探讨。

王继祥副会长指出,随着物联网、云计算、大数据技术的应用,随着互联网的广泛覆盖,现代物流将进人物流互联网时代(物流4.0时代),也就是智慧物流时代。智慧物流更重视将物联网、互联网、智能制造、电子商务整合起来,通过以精细、动态、科学的管理,实现物流的自动化、可视化、可控化、智能化、网络化。智慧物流利用集成智能化技术,使物流系统能模仿人的智能,具有思维、感知、学习、推理判断和自行解决物流中某些问题的能力。智慧物流正推动着四大物流模式创新,即协同物流、实时物流、单元化物流和程控化物流。

移动机器人(AGV)作为智能工厂内物料运输及产品装配等环节的重要设备,其技术发展和应用趋势颇受关注。王玉鹏在会上不仅详细介绍了AGV的技术发展及典型案例,同时还详细分析了AGV在最新领域的应用前景,特别指出电商、码头及智能停车场将是AGV未来的重点应用领域。

张芸分析称,工厂内的自动识别、全程定位等技术,即智慧物流,实际上是供应链互动的概念,如果供应链不能有效联动,那么智能物流就非常难以实现。

对于如何进一步让智慧物流落地,来自制造业及物流设备商代表均发表了自己的看法。吴双建议,制造业企业在对现有物流系统进行升级改造时,不要好高骛远,而应做好总体规划、逐步分阶段推进,在满足当前市场需求的同时有一点前瞻性。此外,重视物流技术,包括如何获取、传递、处理、应用信息,并进行循环。实现物流的智能化。

贵州益佰制药股份有限公司物流总监吴巍也进一步表达了数据对于智慧物流的重要性。他认为,数据是智慧化供应链的核心,采集有用数据后要进行分析,此外还要有管控信息的人才以及使得每一个环节都能有效协调、控制的合理流程,只有这样,数据才能真正发挥作用并真正实现物流智慧化。

解析供应链与物流优化之道

物流对制造企业的重要性毋庸置疑。仅从产品生产时间来分析,只有30%~40%的时间用在生产上,60%~70%的时间花费在原材料运输、拆包装、质检、存储、分拣、上线运输、成品包装、暂存、分拨、成品配送、安装、测试、配件供应、回流、信息交换等非生产的物流活动中。制造业在转型过程中,物流能力的提升,不仅可以改善企业快速反应能力,增强产品的交付能力,而且可以有效降低物流成本,因此,近年来制造企业越来越重视优化物流与供应链管理。多位与会嘉宾从物流系统规划建设、全面库存管理及物流模式变革等方面进行了经验分享。

张芸建议,制造企业实施物流优化时应该遵循四个步骤:数据分析.概念方案规划-技术细节设计-项目实施。她认为,物流体系建设和优化需要分步实施并且长期坚持,即“长期坚持+点面结合”,并以量体裁衣的物流方案先行作为基础,以定制化的信息系统作为支撑,以持续改善提升标准化固化为方向,使企业逐级实现整体统筹物流规划到信息的实时交互,并最终实现逐点改善、标准化以及物流体系的持续优化。

吴双分析认为,由于制造业企业存在物流活动分散、物流规划设计格局不清晰以及物流扩建及流程优化难等问题,导致企业物流成本增加,物流运作效率低下并影响企业运营和进一步发展。为此,制造业应该优化管理库存,发展集智能化、一体化、层次化、柔性化及社会化为一体的智能物流。

物流优化可以给制造企业带来哪些效益?吴双通过分享多个案例道出了这一问题的答案。例如,美克美家通过实施智能物流项目,将传统仓储物流的边界突破并延伸至生产物流,物流信息也随之延伸至生产车间、加工单元以及上下游供应商.从而贯穿整个供应链,不仅有效地对整个生产仓储过程进行精准管理,提高企业的执行效率和生产率,还可以实时掌握库存,合理保持和控制企业库存,降低成本,最终改善公司的综合效益水平。

20多年专注于库存管理的程晓华,则从库存角度解读了制造业供应链管理问题,指出全面库存管理的重要性。他认为,企业计划购买的原材料、生产出的产品以及已交付的产品都是库存,库存水平直接反应了企业供应链的能力和流程状况。特别是在智能化时代,个性化制造及需求会越来越多。预测也会越来越难做,因此库存管理对于企业发展的意义不言而喻。他建议,企业应该从流程设计、组织架构搭建以及组织能力提升等方面着力,最终实现整个供应链管理绩效的提升:

段沛佑则对驱动制造业创新发展的“互联网+”工业物流模式进行了全面解读,包括:基于行业协同集中采购、面向客户订单敏捷供应链、面向成本控制的精益物流管理、“互联网+”面向大规模定制化、面向供应链一体化、面向产品生命周期、面向物联网的智能集成,以及基于金融资本的供应链融资八个物流管理模式,并对海尔、红领集团等先进的物流模式进行了分析。

制造业物流升级任重道远

与会嘉宾普遍认为,中国要从制造业大国转型升级为制造业强国还有许多事要做,但其中最难的是物流。值得欣慰的是,物流在制造业企业中的地位正不断提高,企业领导人对物流也越来越重视。一方面,是基于物流本身的重要性。另一方面,则是基于企业自身业务模式的变化及成本压力反映在整个供应链与物流上的问题日益突出。吴巍分析到,去年医药行业出现库存积压现象,药品无法入库,生产通道堵塞,种种问题开始暴露。来自成本的压力则促使整个供应链结构发生巨大变化,鼓励制药企业直接走向终端,向药店配送。这些都对物流提出了更高的要求。

智能物流的特点第5篇

[关键词]智能物流;鲜活农产品;配送

[中图分类号]F326 [文献标识码]A [文章编号]1005-6432(2013)14-0013-02

1 引 言

鲜活农产品是保障居民基本生活的重要产品,随着我国城市化进程的加快,居民消费也随着进一步升级,消费者在鲜活农产品的消费过程中,对其质量、新鲜度以及时效性有了更高的要求。这些新的要求对鲜活农产品物流提出了新的挑战。在新形势下,国务院于2012年1月下发《国务院办公厅关于加强鲜活农产品流通体系建设的意见》,该文件提出探索开展农产品电子商务试点,推动扩大网上交易规模,完善信息采集平台,建设12316信息平台等措施。这一系列政策措施将有助于推动鲜活农产品流通体系建设以及智能物流在鲜活农产品配送过程中的应用。

2 鲜活农产品及智能物流概述

21 鲜活农产品的定义及其物流配送要求

2005年2月,国家在《全国高效率鲜活农产品流通“绿色通道”建设实施方案》中,界定了鲜活农产品的范围,即“新鲜蔬菜、新鲜水果、新鲜水产品、活的禽畜和新鲜的蛋奶”5类农产品。具体包括新鲜蔬菜(含未加工的蘑菇、生姜、鲜活茉莉花、鲜活菜用玉米,新鲜的花生、淮山、粉葛、马铃薯、马蹄、莲藕)、时鲜瓜果(含果蔗、保鲜瓜果、新鲜板栗)、鲜活水产品(含未加工的冰鲜鱼、虾、蟹)、活的禽畜、鲜活蛋和奶。

鲜活农产品物流配送需要满足以下要求:首先,鲜活农产品配送要满足时效性要求,一般情况下,鲜活农产品保质期较短,需要在规定期限内从生产者手中转移到消费者手中,所以,对物流配送效率的要求非常高;其次,要对鲜活农产品进行保鲜,由于鲜活农产品一般都是易腐烂变质产品,而且随着居民消费水平的提高,消费者对鲜活农产品的新鲜度要求也随之提高,多数情况下,鲜活农产品采取冷链物流配送方式,对于比较特殊的鲜活农产品还需采取特殊保鲜措施;最后,鲜活农产品配送要求损耗率低,大多数鲜活农产品在配送前就已投入了很高的加工、储存成本,而且部分产品不易分割,一旦在运输过程中出现损坏,将无法出售,经销商会蒙受很大损失,因此,鲜活农产品的物流配送要考虑仓储设施、运输设备、配送通道等对产品的损坏程度,尽量选择损耗率较低的配送方式。

22 智能物流的定义及特征

智能物流,是互联网、物联网技术的深化应用,利用先进的信息采集、信息处理、信息流通、信息管理、智能分析技术,智能化地完成运输、仓储、配送、包装、装卸等多项环节,并能实时反馈流动状态,强化流动监控,使货物能够快速高效地从供应者送达需求者,从而为供应方提供最大化利润,为需求方提供最快捷服务,大大降低自然资源和社会资源的消耗,最大限度地保护自然生态环境。

智能物流的特征可以体现在以下几方面:首先,可以实现监控的智能化,对车辆与货物进行监控,并主动获取和分析信息,实现物流过程的全监控;其次,通过EDI等技术可以实现企业内外部数据传递的智能化,有助于实现供应链的一体化和柔性化;此外,通过实时的数据监控和分析,可实现企业物流决策的智能化,及时对物流过程与调度进行优化,满足客户的个性化需求;最后,通过大量基础数据和智能分析,可实现物流战略规划的建模、仿真和预测,确保未来物流战略的准确性和科学性。

23 智能物流是优化鲜活农产品物流配送的有效途径

首先,智能物流能够集中鲜活农产品配送过程中的所有信息,发挥信息优势。智能物流是采用了先进的信息采集技术,并对鲜活农产品的仓储、加工、运输等环节进行实时监控和反馈,能够根据实际情况及时对配送方案进行修正,使鲜活农产品物流配送效率更高。

其次,智能物流强调智能监控,有利于保障物流配送过程中鲜活农产品的质量。在智能物流条件下,鲜活农产品从生产、加工、仓储到运输配送,每个产品都有自己的电子标签,所有产品的信息都能够及时准确的被记录在信息系统内,相关部门可以借助信息管理平台对鲜活农产品的质量进行跟踪和监督,保证鲜活农产品按照国家有关规定进行生产、加工和运输。当出现产品质量问题时,监管部门可以通过鲜活农产品信息系统轻松地追溯到问题的根源,有利于问题的解决。

此外,智能物流侧重于信息的自动化传输,有利于鲜活农产品上下游企业的沟通协作,降低交易成本,对市场变化做出快速反应。鲜活农产品的生产、加工、仓储、运输、销售等企业构成了一条完整的供应链,在智能物流条件下,企业之间应用EDI技术进行数据共享和传输,这样既降低了“牛鞭效应”的影响,又可以促进企业之间进行合作。鲜活农产品的市场需求信息能够更快捷的从供应链末端传递到上游各个企业,这样将大大降低企业获取市场信息的成本。由于信息是实时共享的,企业之间的谈判成本将大幅度降低,企业对市场变化做出决策的时间也将缩短,最终使供应链各个企业能够对市场需求做出快速反应。

3 建立鲜活农产品智能化物流配送体系

31 建立科学的市场需求预测模型

我国鲜活农产品价格波动频繁,种养户经常面对复杂的市场状况,尤其是出现产品质量问题时,市场需求会大幅波动。要解决这一问题,就需要建立科学的市场需求预测体系。物流相关部门可利用RFID(无线射频识别)、GNSS(全球定位系统)等现代信息技术,收集市场上鲜活农产品的销售和运输等信息,探究鲜活农产品需求波动的原因及规律,构建鲜活农产品需求因素关系图。并进一步对关键因素进行研究,把握其影响因素及作用机制,结合鲜活农产品价格等关键信息,构建需求预测模型,不断提高短期、中期和长期市场需求预测的准确性,帮助鲜活农产品生产者安排生产。构建鲜活农产品需求预测模型是个长期复杂的过程,需要不断积累市场信息才能提高预测模型的科技含量,因此,对于生产、采购和销售的相关信息,有关部门要及时准确的进行收集和整理。

32 建立科学的物流节点布局优化模型

企业对物流节点布局的优化可以大大降低仓储和运输费用,还可以提高运输效率。目前,由于经济体制以及物流信息技术的影响,我国的鲜活农产品物流仍广泛存在物流节点布局不合理的现象。

要解决这一问题,首先要建立物流节点布局优化模型,促进种养基地、鲜活农产品物流企业和批发市场的合理化布局。科学的物流节点布局优化模型要在遵循国家农产品物流发展战略及相关法律法规的前提下,以物流信息系统采集的数据为基础,客观分析企业、仓库以及客户的具体情况和周边市场需求,从提高物流效率和节省整体物流成本的角度出发,模拟和优化节点布局决策,实现物流节点和设施系统布局的合理化。此外,应制定运行效率的考评指标体系,对物流系统的运行进行量化考核,根据考核结果科学调整物流节点的网络布局,提高物流节点运行效率,为物流运输优化奠定基础。

33 建立科学的物流配送通道优化模型

鲜活农产品配送分为两个操作层面:配送通道的设置和物流运输的执行。合理的配送通道是合理物流运输执行的前提。以鲜活农产品二次物流为例,配送通道设置解决的是从哪个点运到哪个点的问题,物流执行解决的是该运输通道下,运多少、何时运的问题。鲜活农产品配送通道的设置受制于运输费用、道路状况以及运输工具等条件。相关部门可根据智能交通系统(ITS)采集的相关数据,在降低物流成本的前提下对物流节点进行优化布局,建立物流运输通道优化模型。此外,还可通过地理信息系统(GIS)和全球定位系统(GNSS)持续跟踪区域道路的变化及资源流向情况,结合实际情况对模型进行更新和优化,根据模型的智能测算结果,及时优化后的运输通道,指导和调整运输,从而降低成本,提高效率。

34 构建鲜活农产品物流配送信息系统

鲜活农产品物流配送信息系统可分为几个层次,包括数据层、业务层、应用层和计划层。数据层主要对物流信息以数据库形式进行存储;业务层是对物流合同、票据进行处理;应用层主要对仓库作业计划、路径选择、控制评价给予支持;计划层主要是帮助管理人员制定物流配送战略规划。

要完成以上各层次的工作首先需要一个电子数据交换(EDI)平台,它是数据进行标准化传输的基础;其次需要一个运行管理平台,它的主要功能是进行入库及出库处理、作业控制、仓储计费等;还需要信息平台,该平台可将鲜活农产品的物流配送相关信息及时发送给供应链企业;此外,还需要建立数据共享平台,数据共享平台可将物流配送信息进行存储和管理,管理者通过此平台获取所需的信息,从而有助于做出正确的决策。在必要情况下,还可建立鲜活农产品电子商务平台,该平台可为买卖双方提供网上交易的功能,进一步促进鲜活农产品的销售。

35 建立物流配送服务商考评体系

智能化的鲜活农产品物流配送体系通常要使用第三方物流,对于专业化的物流配送商,需要建立科学的考评体系,这有利于促进物流配送商之间的良性竞争,引导运力配置,降低运输价格,保障鲜活农产品的配送效率。

构建物流配送服务商考评体系需要物流主管部门牵头,区域物流部门组织物流配送商参与。根据《意见》要求,农产品流通体系建设过程中要建立信息采集平台,相关部门可通过信息采集平台准确收集信息,选取合理的指标对物流配送商进行量化评价,比如区域物流队伍一、二次物流运输到位率、运价水平、配送产品损耗率以及客户的评价等。运用先进的设备和智能化的技术手段替代人工记录考评的方式,定期考核物流配送商绩效,发现作业过程的薄弱环节,强化优势,弱化劣势,从而提高配送效率。

4 结 论

信息技术的发展推动了物流业的变革,传统的鲜活农产品物流配送也因此受到了挑战。为了进一步适应市场的变化,鲜活农产品物流配送企业和相关部门必须应用现代物流信息技术提升整个供应链的运作效率。正在蓬勃发展的智能物流将为鲜活农产品物流配送的升级提供了良好的机遇。智能标签、电子数据交换(EDI)技术、无线射频识别(RFID)等新技术的应用将使鲜活农产品物流配送真正进入网络化、智能化、柔性化和敏捷化的时代,鲜活农产品配送过程中出现的问题也将迎刃而解,从而推动整个鲜活农产品行业的健康快速发展。

参考文献:

[1]袁芳.我国农产品与现代流通体系接轨面临的困境与对策研究[J].暨南大学学报,2007(1):12-19.

[2]司银霞.生鲜农产品配送模式的对比分析研究[J].物流工程与管理,2011(7):69-71.

智能物流的特点第6篇

【关键词】物联网;智慧物流;发展现状;发展模式

【中图分类号】F251【文献标识码】A【文章编号】1674-4993(2015)11-0111-04

物联网已经被列入国家“十二五”重点专项规划,而智慧物流则是物联网发展的十大流域之一,是物联网应用在物流领域的表现形式。智慧物流以物联网技术为基础形成物流行业的专业网,直接或间接地对物联网相关产业产生需求。目前,虽然物联网技术及智慧物流还处于技术层研发推广期,还没有发展至大规模的应用,但是在国家政策支持、关键技术攻关、产业化推进等多方面的共同作用下,物联网及智慧物流产业必将迎来爆发式的发展。为此,有关智慧物流发展的议题也引起了很多学者的关注。张军杰(2006)对智能物流的发展状况、发展动力、发展因素进行了研究,并提出了相应的发展对策。汪鸣(2011)认为智慧物流是使物流业具有整体智能特征和与服务对象之间具有紧密智能联系的一种发展状态,可通过物流业整体智慧化来推动智慧物流的发展。李霞对利用物联网发展智能物流的作用、困难和重点领域进行了研究。以上学者虽提出了很多有建设性的意见,但都未提出系统化的发展模式。本文借鉴了以上研究成果,分析了物联网和智慧物流的关系,总结了国内外智慧物流发展经验及几种典型的发展模式,提出了“政府推动、产业化推进、企业主导、技术和标准引领、市场化推广应用”的创新发展模式,希望能对智慧物流的持续、健康、快速发展起到抛砖引玉的作用。

1物联网与智慧物流

1.1物联网是智慧物流发展的技术基础

物联网就是在计算机互联网的基础上,利用射频识别、传感器、数据通信等技术,构造一个覆盖世界上万事万物的“InternetofThings”。物联网包括感知层、传输层和应用层。在感知层,应用RFID、传感器、条形码等感知技术实时采集物的属性信息;在传输层,应用EDI、Internet、GPS、移动通信等现代通讯技术,对信息进行实时、准确、可靠的传输;在应用层,利用云计算等智能计算技术对海量的数据和信息进行分析和处理,对物体实施智能化管理和控制。智慧物流是以物联网为基础,融合新一代声、光、电、机、信息等技术,高度集成社会各种相关资源,通过中枢式数据处理方式,及时提供最优的运作决策方案,以协同整个物流运作流程,从而实时高效、灵活地响应人性化的物流需求,并能动态、快速地适应物流环境复杂变化的新的物流业态。物联网通过智慧感知、智慧传输、智慧处理及智慧管控等技术,对智慧物流的运作和服务产生深刻的影响。基于感知技术对物流运作过程中的物流流体、载体、流向、流程、流量、流速等六大基础要素的感知,使得智慧物流在运作过程中更加透明,实现全程可视、可控、可追溯;基于先进的信息传输技术、标准化技术及协同平台的建立,实现物流主体之间的信息互联和业务互通,实现流程无缝对接、运作互补及市场互补;通过集中式数据处理和服务中心等对信息的深入分析、挖掘和计算,使得每个物流主体能够即时获取系统最优决策方案,及时与物流运作“前台”形成协同,围绕顾客提出的要求,通过协同预测、协同补货、协同运输、协同配送等方式,实时为客户提供人性化的物流服务。

1.2智慧物流为物联网发展提供市场需求

智慧物流为满足组织在物流领域进行多方案选择的决策需求,需要不断拓展物流信息采集感知的深度和广度,从而对仿真系统和决策技术产生需求。在构建和实施物流信息平台时,相应地要运用数据收集、传输、存储、处理及信息的展示和运用等相关的物联网技术。同时,在物流领域运用了物联网相关技术,催生了物流管理、物流信息服务、应急管理、软件开发、装备设计开发、物流电子产品研发、节能环保等相关的服务产业,衍生出对物联网相关产品或服务的需求,相应地拉动物联网产业的增长。总之,一方面,物联网作为实现智慧物流的手段为其提供技术支持并使物流真正具有了智慧化的特征,具有了感知、自适应及与外界平滑交互的能力;另一方面,智慧物流领域是物联网技术的主要应用领域,物流企业是物联网的重要应用用户,智慧物流也为物联网提供了需求支持和发展方向。

2国内外智慧物流实践发展概况

2.1国外智慧物流发展现状

在国外,美国、欧洲和日本等国家已经成为智慧物流产业发展的领头羊,国内市场规模巨大,相关技术处于国际一流水平,形成了较为完整的产业链条,智慧物流已经成为其发展现代物流产业,降低物流成本,推动产业升级的重要推动引擎。在物联网技术应用方面,美国的沃尔玛、德国的麦德龙、英国的Tesco等大型零售企业都宣布了自己的RFID计划准备进行巨额投资,相应带动它们的供应商在RFID市场的投入;联邦快递、联邦包裹等这些大的物流公司对物流跟踪和监控技术的应用,拉动SUN、Alien科技、惠普、微软在内的硬件及软件提供商的投入,进而形成RFID的巨大市场和完整产业链。M2M技术在欧美地区已经实现了在多个领域的应用,已形成较为完整的产业链,亚洲地区日韩发展也较快。TNT运用云计算技术来提升供应链可见性、运营效率及客户服务质量,产生了较好效益。三维规划和仿真技术在日本企业得到很好的应用。在物流设施和信息标准化方面,欧洲企业做了很多工作。发达国家政府也为智慧物流的发展创造了良好的外部环境。一是采用了政府和企业共同投资社会化运营的机制来建设和运营网络、公共信息平台等物流基础设施;二是开放市场,创造公平竞争的市场环境;三是通过政策支持、战略规划及采取了一系列促进国家之间及国内政府、区域、企业等各方面有机地协调与合作的体制与机制,促进物流体系的国际化、标准化。

2.2国内智慧物流发展现状分析

2.2.1发展智慧物流的现有基础在国内,随着我国促进智慧物流发展相关政策、规划及方案的相继出台及实施,智慧物流基础设施的投资不断加大,各种与智慧物流有关的示范项目不断推出,物联网技术在物流领域的应用不断深入,社会各界对发展智慧物流的经验不断丰富,认识不断提高,这些都为发展智慧物流提供了良好的基础条件。比如在物联网技术的应用方面,在医药、农产品、食品、烟草等行业领域,产品可追溯系统在货物追踪、识别、查询、信息采集与管理等方面已具有成功的应用,技术与政策等条件都已经成熟,正在全面推进;物流过程的可视化智能管理网络系统已有初步应用,初步实现了物流作业的透明化、可视化管理;在智慧物流信息平台建设及智能终端的网络化应用上,已有很多创新应用;部分企业所建立的智慧化物流配送中心,已建立物流作业的智能控制、自动化操作的网络,可实现物流与生产联动,实现商流、物流、信息流、资金流的全面协同;智慧供应链的建设也有初步的尝试。2.2.2国内几种典型智慧物流发展模式分析2.2.2.1智慧物流产业联盟发展模式这种发展模式主要是在具备发展智慧物流的政策支持、技术、产业等一定基础的地区,在政府及社会各界的推动下,按照“技术共享、风险共担、协作、互利和有效利用资源”的原则自发组织非盈利性的企业联盟,联盟通过建立明确的工作目标和有效的合作机制,组织开展重大项目、关键共性技术的协作攻关,促进研究成果、知识产权的共享,推动联盟标准向行业、国家标准转化,最终实现技术研发、市场开拓、技术标准、产业建设四个方面的全面进步。这种发展模式的路径见图1。目前实施这种发展模式的有宁波智慧物流产业发展联盟和南京(江宁)智慧物流产业联盟。前者主要是为了实现互联互通而通过统一标准、建立平台及深化和优化应用而建立的联盟。后者是由社会各界共同推动的标准联盟,通过标准支持、提升和引领产业发展,通过联盟支持标准化工作。2.2.2.2“平台”载体型智慧物流的发展模式这种发展模式主要是基于智慧物流理念和先进的物联网技术,依据不同层面对智慧物流的需求,通过采用由政府主导、企业主导或政企协议共建等方式建设智慧物流园区、智慧物流信息平台及智慧物流网络等智慧物流基础设施,为聚集在“平台”上的各类企业提供智慧化的发展环境并提供优质的服务,充分发挥信息和物流资源集聚、交易、管理、监控、协调及供应链一体化等多功能优势,以吸引社会各界用户积极应用“平台”,并按照平台要求的标准改造和提升自己,以实现智慧化。待物联网应用逐步成熟及智慧型的物流企业逐步增多,可以把成熟的技术、流程及管理总结上升到产业标准,进而在产业推广,实现物流产业的智慧化。这种发展模式的路径是见图2。目前国内实施这种发展模式的地区和企业较多,比较典型的有马云的菜鸟网络平台,成都智慧物流信息平台,浙江省宁波市的“1+7”的智慧物流协同平台,江苏省亚邦医药物流中心打造的智慧物流园区等。2.2.2.3示范工程带动型智慧物流发展模式这种发展模式主要是由国家或地方的有关部门智慧物流示范项目,由相关政府部门或其委托的物流协会等中介组织负责项目实体前期的审查、评估,中期的跟踪及管理及后期的验收和考核,项目可获得一定的政策支持、财政补贴及其它服务的支持。这种发展模式通过智慧物流工程立项、实施及验收来选择、培育智慧物流主体,促进主体的成长、成熟及发展,这种发展模式的路径见图3。目前实施这种发展模式比较典型的是广东省的南方物联网示范工程,此工程是由九大领域的应用项目组成。其显著的特点是物流协会不仅代替政府承担了项目管理工作,还承担了为项目示范企业沟通、协调和服务的工作,为其提供了改造物流装备、培育企业品牌、提升管理水平、强化行业自律、应用物联网技术“五位一体”的服务方案。当然,以上几种发展模式并不是孤立的,各种模式之间也有交叉,比如示范工程带动型模式也包括物流信息平台和园区建设的内容。2.2.3发展智慧物流的制约因素当然,作为一种处于起步阶段的新型物流业态,智慧物流在发展中也存在着一些制约因素。一是社会各界对智慧物流的性质、发展机制、对本区域产业发展的带动等方面的认识还不足,缺乏统筹规划及可操作的标准,至今还没有一个国家层面上的智慧物流发展规划及实施方案;二是社会各界在智慧物流发展上存在本位主义,这与智慧物流的“跨界”(跨行业、跨区域、跨企业)特性是不兼容的,进而制约了“互联互通”;三是物联网技术在物流领域的应用上,存在着应用的比例低、应用范围小、应用层次低、应用成本高,共性和关键技术还未获得突破,物流公共信息平台发展缓慢,信息化、标准化、网络化和协同化还未实现;四是智慧物流发展的基础薄弱,发展智慧物流所需要的资金、技术、设施及设备、人才等资源缺乏,缺乏成熟的发展模式,产业发展难度较大。

3我国智慧物流发展模式

借鉴中外智慧物流发展的经验,结合智慧物流发展现状,本文提出了“政府推动、产业化推进、企业主导、标准引领、市场化推广应用”的智慧物流发展模式。

3.1政府推动

3.1.1政府要为智慧物流的发展创造良好的环境在智慧物流的发展过程中,政府的主要职责在于营造环境、全方位引导、培育整个产业的发展。一是政府应该把政策支持和资金扶持同步规划、同步实施,把智慧物流中的公共服务内容与通讯等设施作为城市基础设施进行规划、设计、开发、建设、运营,营造物流信息化互联互通的环境,整合智慧物流资源,形成智慧物流发展的载体;二是培育、扶持一批在国内外具有较强竞争力智慧物流企业主体;三是加快物流企业智慧化层次的分工,形成以智慧物流企业发展为导向,其他物流企业及相关智慧产业协调发展的智慧物流产业体系,努力构造社会化、专业化、智慧化、规模化的智慧物流服务体系。3.1.2政府是智慧物流技术的研发、推广及标准化的推动者一是政府采用招标等方式直接组织或战略引导的方式推动智慧物流技术的研发、推广工作,研发单位及其专业技术人员进行研发和跟进,通过市场化运作将成果运用于物流产业;二是政府与研发部门、生产企业明确分工、相互配合、相互协调共同促进智慧物流技术的研发、推广工作;三是政府重点抓好标准建设,针对不同行业、不同领域的物流作业,总结挖掘其中的共性特征,借鉴国外先进经验,结合我国国情,制订出适合我国使用的物流标准和信息化标准。3.1.3政府是智慧物流投入的主导者和引导者智慧物流系统建设投资大、回收期长、风险大、社会效益显著,没有哪个单位有能力或意愿单独完成这样具有公益性质的复杂的系统。需要在政府的宏观指导和统一协调下,创新体制、机制和运营模式,充分调动各方面的积极性,集中社会有效资源来共同完成。

3.2产业推进

要根据产业基础和资源禀赋,针对不同领域的发展阶段与特点,按照产业发展规律,通过差异化策略推进智慧物流的发展。对电子商务物流、冷链物流、医药食品物流、危险品物流、烟草物流及港口和集装箱物流等重要领域和运输、仓储等重要基础设施,围绕物流管理流程推动物联网技术的集成应用,抓好一批效果突出、带动性强、关联度高的典型应用示范工程。要建设智慧物流产业集聚区和信息平台,制定产业标准,创造智慧物流发展的良好的生态环境,加快推进智慧物流产业高端化、规模化、集群化、协同化发展。要利用智慧物流的技术手段加强与其它区域的物流信息互通,推进跨区域的产业联动发展和经济合作;由政府、行业、科研机构及物流、金融、制造及商贸等不同的领域企业的组建智慧物流产业联盟或实体,合力推进智慧物流跨产业融合发展。

3.3企业主导

企业主导就是以企业为主体,实现数据智慧性、网络协同化、决策智慧化。数据智慧化就是企业使用智慧化的设备,比如通过传感器、RFID标签、GPS和其它设备构筑一个先进的、能够及时收集信息并及时把信息回馈给组织的系统。网络协同化,就是企业要与合作伙伴进行信息的共享,这些合作伙伴包括企业内部、部门和部门之间、外部的供应商之间以及与客户之间的信息共享。决策智慧化是指物流链上相关企业借助智能系统,根据收集的数据来衡量各种约束和选择条件,提供选择方案,以便决策者对各种行动过程进行选择,或由系统通过学习自动做出决定。

3.4标准引领

标准化工作可以保障物流科技发展的协调统一、实现物流管理现代化、降低物流成本、提升物流发展水平,消除组织及信息壁垒,引领物流业向智慧物流的方向发展。一是强化统筹协作,依托跨区域、跨部门、跨行业的标准化协作机制,协调推进智慧物流标准体系建设和各项专业标准的制订,推动相关法规、配套规章、制度的制定和完善,逐步构建一个科学、系统、先进和开放的物流标准体系框架;二是加快编码标识、接口、数据、信息安全等基础共性标准、RFID等关键技术标准和感知技术等重点应用标准的研究制定;三是以信息平台标准化为重点,在智慧物流协同平台及数据中心建设的基础上,加强智慧物流技术标准、信息标准、数据标准及业务协同标准的制订和推广;四是以企业标准化需求为导向,鼓励企业购买或自主开发与自身业务相适应的计算机信息管理系统,系统能够与客户企业、合作伙伴、物流园区、口岸、公路、铁路、民航信息及公共信息平台有效对接,实现数据交换及信息共享。

3.5市场化推广应用

智慧物流的发展最终要引入市场机制,在政府“推力”和市场信号“引力”的双重作用下,增强智慧物流发展的内生性动力,吸引更多的社会资金投入到智慧物流的建设中;更充分地利用信息市场和技术市场的媒介作用,完善与其配套的服务机构,使市场真正成为连接供需双方的信息和技术交易和扩散的场所;构建开放的市场化智慧物流推广服务体系,发展多元化的智慧物流服务主体,构建智慧物流企业应用性平台,引导企业根据智慧物流专业市场需求改善产品结构和技术应用结构。

4结束语

总之,通过政府推动、引领及带动,实业界及理论界的不断探索实践,产业层面的促进及市场层面的推广应用,基于物联网技术的智慧物流会出现更多的创新发展模式,直至最终形成可复制的成熟的发展模式。

[参考文献]

[1]王继祥.物联网发展推动中国智慧物流变革[J].物流技术与应用(货运车辆),2010,(3):80-83.

[2]刘志硕.智能物流系统理论与方法研究[D].北京交通大学博士学位论文,2004,10.

[3]张军杰.智能物流发展状况、影响因素及对策研究[J].物流技术:装备版,2010,(34):62-64.

[4]章合杰.智慧物流的基本内涵和实施框架研究[J].商场现代化,2011,(21):30-32.

[5]汪鸣.智慧物流重在智慧[J].物流时代,2011,(11):13-13.

[6]李霞.浅谈物联网时代的智能物流[J].江苏商论,2011,(26):9-9.

[7]蔡增玉.基于RFID的智能物流管理系统研究[J].计算机技术与发展,2008,(10):62-64.

智能物流的特点第7篇

关键词:现代物流;物联网技术;智能仓储

中图分类号:F406.5 文献标识码:A

Abstract: Intelligent warehousing is an important direction in modern logistics industry. The applications of technologies of the internet of things(IoT)provide powerful technical support for the development of intelligent warehousing. An important feature of intelligent warehousing is that it can provide a good storage environment and make the stored products safe and effective according to the characteristics of the products. This article elaborates the applications of IoT technologies in food storage, medicine warehouse, cotton storage. In the meanwhile integrating all kinds of functional storage into comprehensively intelligent warehousing is a technical proposal and establishing an informational, standardized, intelligent and intensive warehousing by using IoT technologies is realistic.

Key words: modern logistics; internet of things; intelligent warehousing

0 引 言

近年恚我国现代物流业不断发展,大部分物流业是传统物流业融入信息化技术[1],少数采用先进的自动化和物联网技

术[2],还有小部分保持着传统的运输方式[3],总体呈现为中间大两头小的橄榄形。全国“十三五”规划中指出现代物流业要加强物流基础设施的建设,大力发展第三方物流和绿色物流、冷链物流、城乡配送。2016年7月份,国务院总理提出以先进的信息技术与物流深度融合来促进物流业的转型升级。总体的方向是让物流业向着先进化、智能化发展。仓储是物流业中不可或缺的环节也是对基础设施要求较高的部分,在供应链中起到了承接上下游的作用,所以物流的智能化也要求者仓储向智能化发展[4]。本文着眼于仓储中的环境部分,探讨基于物联网技术建立信息化、标准化、智能化、集约化的综合性智能仓储的技术方案与应用意义。

1 智能仓储及物联网技术概述

依托于物联网技术的智能仓储,能够有效提高仓储管理的效率和安全,从而促进现代物流的发展,体现现代物流的实用性和先进性。

智能仓储管理对象基本上包括仓、储、物和环境四项。仓是指仓储活动所需的场地、设施、设备;储是指仓储业务及其管理活动,包括出入库业务、出库业务、移库业务、仓储规划、寻址管理和货位管理等;物是指对仓库内商品和工作人员,实现货、人的监管。环境是指人、设备和货物的活动、存放环境因素[5]。智能仓储常采用物联网技术、自动控制技术、智能机器人技术、大数据挖掘技术、云计算技术、智能信息管理技术等先进的技术来实现其对四个对象的管理控制。本文主要探讨的是物联网技术在智能仓储环境监控方面的问题。

物联网从狭义上可指连接物品与物品间网络,用来实现对物品的智能化识别和管理;而广义上的物联网则可以看作是信息空间与物理空间的融合,将一切事物数字化、网络化,在物品之间、物品与人之间、人与现实环境之间实现高效信息交互方式,并通过新的服务模式使各种信息技术融入社会行为,是信息化在人类社会综合应用达到的更高境界[6]。国际电联报告提出物联网主要有四个关键性的应用技术:RFID、传感器、智能技术以及纳米技术[7]。这些先进的技术都是为了使人与物之间更紧密的联系,方便人们的生活和工作,是促进社会生产发展的动力。

2 物联网技术在仓储中的应用研究

物联网技术在各类仓储的环境监控中都有着应用,本文着重综述了物联网技术在粮食仓储、医药仓储、棉花仓储环境监控中的应用。

2.1 粮食仓储

物联网技术可以应用于粮食的多个方面:粮食物流、粮食仓储、粮食信息跟踪等[8]。物联网技术在粮食仓储中的应用是本文关注的重点,尤其是对于实时监测粮食的环境,并对环境情况进行反馈控制。

粮食存储在仓库之中,受气候、通风和环境等外界因素的影响,粮食仓库的温度和湿度都会发生变化,从而影响了粮仓中气体、微生物的浓度或数量,进而造成粮食的品质下降。针对这一情况,以粮仓和粮食的温度和湿度作为主要的监测目标并利用温度传感器、湿度传感器、气体传感器、虫害传感器等传感系统对其进行采集。根据采集到的信息进行数据分析,找出关键影响因素,制定决策方案并根据方案自动调节粮食仓储的环境条件,包括自动控温、自动控湿、自动通风以及自动熏蒸等,其简略流程如图1所示。在所示的整个流程中,关键技术主要有传感器技术、传输技术、信息处理技术、智能控制技术等。传感器的选择要满足仓储环境监测的需求,并且保证所采集信息的可靠性;传输技术保证信息传输的及时和准确,如蓝牙、Zigebee、Wi-Fi等无线传输技术;信息处理技术主要是处理大量的信息,提取出对决策控制有用的信息;智能控制技术根据决策的信息智能控制通风、熏蒸、温度和湿度设备的开启或关闭。

在“大蒜之乡”山东省济宁市金乡县建立的全国首个物联网冷库综合监控系统就是一个成功的应用。传统的大蒜仓储环境监控主要通过人工实时监控的方式来进行温度调整,耗费了大量的人力、物力,却无法保证环境监控的精度。由于环境监精度的问题,大蒜出现低温冻坏或高温生芽腐烂的情况时有发生,而且无法及时判断仓库里二氧化碳的浓度含量,会出现因二氧化碳浓度过高造成工作人员窒息的情形。利用物联网技术可以有效改善上面出现的问题。仓库内温度、湿度和二氧化碳浓度等重要的指标信息通过传感器来进行监测,将监测到的数据信息通过无线网络传输到控制中心,控制中心通过与系统预设的温度、湿度和二氧化碳浓度进行比较分析,再通过控制决策中心的指令,自动实现对温度设备和排风系统的控制。同时,还可以随时将仓库内温度、湿度和二氧化碳数值等报警短信发送到手机上,有效实现无人值守、手机端24小时监控,在节约了管理控制成本的同时,也提高仓储管理水平与环境监控的准确率[9]。

粮食仓储环境监控信息感知主要是传感器的使用,利用收集的信息分析控制环境。基于ZigBee技术等无线网络技术通信方式的系统得到广泛应用,使得数据信息的传输更加快速、安全、可靠[10-11]。多传感器融合、无线远程监控等技术的应用研究,也在不断提高粮食仓储环境监测的适用性和稳定性[12-13]。智能自动通风技术可以参考各个参数间的关系,例如温度、湿度等环境参数,通过数据分析找到参数的最佳点,利用智能化控制通风系统,实现仓储环境的控制[14]。气调储粮技术主要监测氧气、二氧化碳等气体数据,调整控制气体浓度,在仓储环境内形成一个低氧、高二氧化碳或者高二氧化氮的仓储环境,从而达到抑制粮食呼吸、杀虫抑菌、延长粮食存储时间的目的[15]。

2.2 医药仓储

2016年3月的山东疫苗事件引起社会极大反响,经食药监管部门核查,两名犯罪嫌疑人经营的疫苗虽为正规厂家生产,但并没有未按照国家相关法律规定运输、保存,而且脱离了2~8℃的恒温冷链,难以保证疫苗的品质和使用效果,注射后甚至可能产生副作用。这一事实说明了医药存储环境的敏感性,这就需要冷链不断流来保证储藏温度。无论对常温或冷链物流体系,由于仓储是其每个重要物流节点的衔接点,不仅涉及生产、储存、运输、销售等环节的启承,也集中了物流体系中的各关键节点间的主要矛盾[16]。本文关注的是医药冷链物流中的仓储环境监测控制。

物联网技术在医药仓储环境监测控制中有如下特点:(1)通过RFID技术,对医药品进行识别,获取药品的信息,根据取得信息确定此类药物的存储温度;(2)通过相应的传感技术感知仓储周围的环境变化,取得周围环境的信息;(3)获取的医药储藏的需求温度和当前周围环境信息的数据,根据数据的变化智能的控制环境,实现医药品可以在自己所需的温度下储藏。基于Agent的环境控制基本结构图如图2所示,Agent通过传感器获取医药存储环境的数据信息,通过自身信息处理,对环境信息的变化做出快速响应,再通过效应器作用于医药仓储环境,从而达到调节控制环境的目的。Agent可以确保不传输有误信息,它的学习能力也让它能够根据环境的变化调节自己,从而满足当前所设定的需求。

传统的医药品存放环境监控都是通过人工监控,人工监管控制无法保证医药品存储环境的可靠性。传统医药环境监控的自动化水平低,不能对医药环境实行自动、实时的监控以及对环境的自动调节控制,从而不能及时发现当前环境数据是否超过预设的数值,造成医药品脱离合适的环境,极易造成损失。基于Agent的h境信息监测系统的研究最近几年十分活跃,该系统融合了环境监测和Agent等学科的最新成果[17]。将物联网技术和Agent等技术的融合,能快速、可靠地获取医药仓储环境的信息,并智能化的自我调节控制环境达到预设值,提升了医药仓储环境监控的自动化、信息化和智能化。

无线射频识别(RFID)技术的应用研究,将数据通过带有传感器的RFID传送至后台处理,利用程序对环境数据进行检测和处理,实现对温湿度等环境信息数据的自动化监测[18-19]。利用无线传感器网络(WSN)和多传感器技术可以获得更多的感知信息,实现对环境信息更加准确、可靠、高效的监控[20-21]。将RFID与WSN技术融合起来组成WSID网络,改善了通信距离、定位追踪、数据融合等技术,不仅提高了监测的时效性和准确性,还极大的降低了成本[22-23]。将物联网RFID技术与基于多Agent的管理系统以及云计算应用相结合,利用Agent的智能性与其他的Agent共同协作完成对应的任务,可以提高管理的信息化以及管理控制的水平和效率[24-25]。

2.3 棉花仓储

中国已成为了全世界最大的棉花生产和消费国家,棉花制品在我国每个家庭中必然存在。棉花是被认定为易燃物的天然纤维,当前有大量棉花储备在物流仓库中,一旦点燃,大火将会在几秒钟内迅速扩张到几百平方米,造成难以估计的损失[26]。除去建筑和管理角度的考虑,本文主要是对棉花仓储的环境监控以及相应防火措施进行分析。

由于棉花易燃、阴燃、自燃的特殊性质,对于棉花仓储的存储的高要求和特殊的防火高要求就更加必要。基于棉花的特殊性质,棉花仓储的温度应保持低于30℃,最大不能高于35℃且相对湿度不超过70%。

通过物联网技术中的传感技术,采用温度传感器和湿度传感器感知仓储环境。而棉花起火最初仅仅是在表层燃烧蔓延,一般都有烟雾、高温和火光,因此采用烟雾传感器、感温传感器和光辐射传感器器等作为防火探测感知器件。利用Zigbee和单片机或其他网络信息技术采集到环境和防火数据,并对数据进行分析处理,来控制报警、防火、灭火等系统。简略的方案如图3所示,棉花仓储整体方案中,由于棉花防火的区域较广,需要接受大量的传感器的数据,还需要长时间的监控并且保证传输信息的及时性,那么采用无线传输技术中的Zigbee技术就是一种很好的方案。Zigbee技术优势:省电,普通两节电池就能使用6个月到2年左右的时间;时延短,可以在ms时间里完成激活和通信;可靠,采用避免碰撞的策略,避免发送数据时候的冲突;网络容量大,一个Zigbee网络可以容纳200多个设备。

传统火灾探测器采用悠闲的通行方式,布线复杂、可靠性低、通信方式拓展性差,且线路容易老化或遭到磨损、腐蚀,有比较高的故障发生率和误报率。采用ZigBee技术构建无线传感网络,将其应用到火灾自动报警系统中的方案,低成本、低功耗的特点克服了有线传感网络的局限性,且其随时可以移动以及添加的特性大大方便了火灾自动报警系统的调整、更新,提高了现有火灾自动报警系统的灵活性。同时增加的移动定位的功能,方便了火灾救援和灭火工作,特别是火灾现场的浓烟密布,无法看清现场的情况,消防工作人员通过移动定位系统,可以与监测控制中心联系并快速确定自己所在方位和火灾的地点以及火灾现场的情况,有效提高了救援和灭火工作的效率[27-28]。

单一的传感器在测量火灾信息时会存在数据可能不完整以及片面的问题,为保证火灾判断的准确性,采用多传感器数据融合的技术,利用计算机技术和算法对信息进行多方面处理分析,从而产生一个能够准确判断当前情况的新信息[29-31]。

3 综合性智能仓储的现实意义

从物联网技术在智能仓储环境控制中的应用中可以看出,大多数的应用都是针对某一具体的行业或某一种特殊产品,基本上是单对单的使用,例如是粮食仓储那么仅仅是用于粮食的存放,其他的不同货物基本就很少有能储藏到其中的。如果仓储存在大量多余的空间,就存在闲置和低利用率的问题,造成资源的浪费,物流的成本也很难降低。本文研究并提出了以物联网技术为核心实现多个功能仓储于一体的智能仓储的方案。

在常见的智能仓储环境控制中,温湿度这一环境参数都是关注的对象,防火报警也是仓储不能缺少的一块,将这两方面作为最基本的智能仓储环境参数。针对不同特性的商品可以添加其相应参数需求的环境检测模块,最理想的综合性智能仓储可以满足任意存储货物的需求,不同存储空间可以满足不同货物的存储环境需求,但这样的代价对现代物流来说是不可能承受的,因此可以考虑几类对于环境要求类似的货物来进行综合,达到任意仓储空间都能满足这几类货物的环境监控。例如粮食和水果这两类,都十分重视温湿度、气体浓度、微生物等环境因素,可以考虑两者的结合,将这两类所需要的所有环境监测传感器件安装在仓库,并且隔离出不同的仓储位置。这样在各个仓储位置都能存储这两类货物,并根据存储的货物进行监控设置,那么仓库的闲置的可能性就会降低。其基本的环境监控设置如图4所示。

随着现代物流的发展,综合性的智能仓储也能一步步前进,在不久的将来也许就可以现一个智能仓储就可以满足绝大多数货物的存储环境监控,这样就能够极大的利用资源,降低物流成本。在实现综合性智能仓储的情况下,如果某一地区发生灾害,就可以选择离灾区最近智能仓储作为应急仓储,无论是水、食品、药物还是被子、帐篷等一系列的救援物资都能快速运入智能仓储保存并及时送入灾害地区,极大方便了不同救灾物资的运输,非常具有现实意义的。

4 总 结

综合性智能仓储的一个仓库可以满足多种货物的存放需求,利用物联网技术实现对不同货物的环境监控,根据监控的情况实时进行智能控制货物所处环境,满足了不同货物的存储,极大提高了仓储资源的利用率,降低物流为不同货物建立不同仓储的成本。仓储以综合性智能仓储为目标,体现出综合性智能仓储的标准化;物联网技术及其智能控制的引入和应用展现了综合性智能仓储的信息化和智能化;综合性智能仓储可以降低物流成本、提升资源利用率,集成了各类货物的存储,彰显了其集约化。

将针对某一具体的行业或某一种特殊产品的单一型智能型仓储升级为满足多方需求的综合性智能仓储,对于物流成本的降低和资源利用率的提升都具有现实意义。本文综述了三类仓储的环境监控情况,提出一种综合性智能仓储的简单方案,希望可以在前人对智能仓储的研究基础上进一步拓展研究的广度和深度。

参考文献:

[1] 吴景新. 论我国物流运输的现状及对策[J]. 黑龙江科技信息,2010(12):90.

[2] 高迎冬,李杰,张颖. 物联网技术在现代物流管理中的应用[J]. 物流技术,2012,31(11):175-177.

[3] 张乐乐,冯爱兰. 现代物流与传统物流的比较分析[J]. 物流技术,2005(7):25-27.

[4] 陈杰. 基于物联网的智能仓储管理系统研究[D]. 合肥:合肥工业大学(硕士学位论文),2015.

[5] 张仁彬. 基于物联网环境的仓储系统架构研究[D]. 郑州:郑州大学(硕士学位论文),2012.

[6] 孙其博,刘杰,黎,等. 物联网:概念、架构与关键技术研究综述[J]. 北京邮电大学学报,2010(3):1-9.

[7] International Telecommunication Union UIT. ITU Inter-net Reports 2005: The Internet of Things[Z]. 2005.

[8] 徐柏森. 仓储粮情监测物联网组网研究[D]. 郑州:河南工业大学(硕士学位论文),2012.

[9] 武晓钊. 物联网技术在仓储物流领域应用分析与展望[J]. 中国流通经济,2011(6):36-39.

[10] 刘楠螅王磊. 基于ZigBee技术的粮食温度监测系统的优化设计研究[J]. 粮油加工(电子版),2014(9):56-59.

[11] 王亿书. 基于无线传感器网络的粮情监测系统的设计与实现[J]. 计算机应用与软件,2012,29(8):110-114.

[12] 王锋,孔李军,艾英山. 粮情测控系统中多传感器信息融合技术的应用[J]. 农机化研究,2010(2):166-169.

[13] 张振声,刘献国,冯百联,等. 远程粮情无线监控系统应用报告[J]. 粮油仓储科技通讯,2011,27(5):7-9.

[14] 史钢强. 智能通风操作系统水分控制模型优化及程序设计[J]. 粮油食品科技,2013,21(5):109-113.

[15] 张来林,张采林,金文,等. 我国气调储粮技术的发展及应用[J]. 粮食与饲料工业,2011(9):20-23.

[16] 党培. 医药冷链物流仓储管理系统关键问题研究[D]. 西安:陕西科技大学(硕士学位论文),2015.

[17] 苏帅. 基于Agent技术的环境信息监测系统设计与实现[D]. 扬州:扬州大学(硕士学位论文),2014.

[18] 陈宇铮,汤仲品,倪云峰,等. 基于RFID的冷链物流监测系统的设计[J]. 计算机应用与软件,2013(2):263-265.

[19] K. R. Prasanna, M. Hemalatha. RFID GPS and GSM based logistics vehicle load balancing and tracking mechanism[J]. Procedia Engineering, 2012(30):726-729.

[20] 王希杰. 基于物联网技术的生态环境监测应用研究[J]. 传感器与微系统,2011(7):149-152.

[21] Jankovic, Olivera. WSN and M2M technology as support of logistics operations[J]. Put i Saobracaj, 2012,58(4):33-37.

[22] 李斌,李文h. WSN与RFID技术的融合研究[J]. 计算机工程,2008(9):127-129.

[23] Mirshahi, Shiva, Sener Uysal. Integration of RFID and WSN for supply chain intelligence system[J]. Computers and Artificial Intelligence, 2013(10):1-6.

[24] 董景全. 基于物联网和Multi-Agent的智能仓储管理系统[J]. 四川兵工学报,2013(10):52-54.

[25] Pavel, Burian. Multi-agent systems and cloud computing for controlling and managingchemical and food processes[J]. J. Chem. Chem. Eng, 2012(6):1121-1135.

[26] Wen-hui Ju. Study on Fire Risk and Disaster Reducing Factors of Cotton Logistics Warehouse Based on Event and Fault Tree Analysis[J]. Procedia Engineering, 2016,135:418-426.

[27] 朱其祥,吴国新,徐守东,等. ZigBee技术在棉花仓库火灾自动报警系统中的应用[J]. 中国棉花加工,2011(6):19-22.

[28] 张青春. 基于Zigbee技术的火灾探测报警传感器网络设计[J]. 中国测试,2013(4):73-75,80.

[29] 魏宏飞,赵慧. 多传感器信息融合技术在火灾报警系统的应用[J]. 现代电子技术,2013(6):139-140,144.

智能物流的特点第8篇

关键词:智慧物流;物流管理;人才培养;再定位与新路径

一、物流管理人才培养的重要性

(一)智慧物流人才培养成为物流产业提速发展的关键

随着中国近几年科学技术的不断发展,由此带动了物流领域的不断推进。而物流领域本身更多的是需要人力的支持,因此,物流业也被称之为劳动密集型产业。从本质上而言,这一产业如果不革新,是无法满足现代化要求的。因此,想要从根本上打破现有阻碍,减少对劳动力严重依赖的现状,就需要将传统的物流转变为智慧物流。2016年,中国的相关文件政策提出:将智慧物流纳入国家扶持的新兴产业之中,并且将其设为新时代的经济增长点。在不久的未来,物流领域将汇聚一大批具有先进技术、高端智能的企业,并且也会带动中国经济的快速发展。近几年,在众多国家中,中国的发展较好,并且,目前已经成为世界上最大的物流市场,根据当下的发展趋势进行评估,中国很有可能在未来的智慧物流发展层面,形成领先地位。智慧物流的崛起,将会代替传统物流产业,构建出更多的经济增长及就业机会,因此,在未来物流产业中,也需要更多的相关领域人才。未来的智慧物流管理人才,不但需要明白人工智能、大数据分析、机器控制等技术,还需要明确“互联网+”背景下如何更好地借助互联网,达成智能配送、智能仓库管理等内容。因此,在“互联网+”的背景下,依托目前较强的技术支持,积极开拓智慧物流市场,实现经济可持续性发展。

(二)智慧物流人才需要“商、技”复合型特质

智慧物流除了需要有技术的驱动,本身在管理层面,也有着较强的诉求。當下,智慧物流基于物联网、云计算等技术,以移动互联网为基础,积极探索智慧物流产业的发展,期待能够从资金、成本、人力等诸多层面予以降低,增强生产率,革新传统物流产业,探索智慧物流产业的新途径。在新的企业管理模式之下,物流的从业人员需要具有较强的全局观,具备较强的专业技能。智慧物流的崛起,意味着对人才需求的增大,物流人才本身除了具备专业技能之外,还需要在思维层面予以拓展,这是新时代下智慧物流产业发展对物流人才所提出的新要求。智慧物流人才所具备的特点如图1所示,在专业知识的扎实要求之外,还需要对智能算法、数据挖掘等知识予以掌握,专业能力不但要明确物流作业和管理能力,还需要对数据层面予以掌握和应用,加强作业的生产效率。此外,在智慧物流的发展过程中,团队协作能力层面也需要予以提高。综上所述,智慧物流人才只有满足了以上的内容,才能够真正的推动智慧物流的综合发展。

图1智慧物流人才特质

二、智慧物流人才培养与产业升级脱节

目前,随着移动互联网的快速发展,基于互联网时代下物流行业的发展,物流管理人才需要具备较强的学习能力和技术应用能力,但就目前而言,这方面的人才并不是很多,且人才的知识储备还不够丰富,不能满足当下市场的需要。因此,高职院校的物流管理专业无法满足市场需求,在此方面仍然存在较强的发展阻碍。

(一)物流管理人才培养定位调整滞后

相对于过去,中国的物流产业已经有了质的变化,无论是在技术层面的革新,还是管理层面的提升,总之,物流企业在组织、流程等诸多层面都予以了转变。而岗位技能要求的提升,就意味着传统人才并不能够满足当下时代的需要,旧的人才培养方式必须要予以革新,重新拟定新的工作任务。由于产业结构的转变,高职院校物流管理专业很少能够进行调整,而人才培养的效果也并不尽如人意。智慧物流的产业发展下,将会形成多样化的细分工种,而高职院校并没有根据智慧物流产业的发展而进行转变,一些高校在特色专业的构建层面仍旧不足,因此,物流管理专业想要得到更好地发展,就需要适应时代需求,培养出智慧物流的新时代人才,让这些人才具备相关的专业知识和综合素质,但从目前来看,高职院校的人才培养定位比较滞后,发展还不到位。

(二)物流管理人才培养过程中“重商轻技”

智慧物流的发展从本质上而言,是技术发展所引起的传统物流产业的变革,其中常见的技术有:可穿戴设备、无人配送、视觉盘点等等,而这些前沿的技术,正在被当代的智慧物流企业所应用。技术应用的综合能力已经成为物流人才的必备能力。但是,物流人才的培养应区别于物流大数据分析师、数据工程师等人才的培养。因此,在当代,高职物流管理专业的人才培养,更多的是需要在管理能力层面的培养,如果缺乏相关的能力、技术,或者思维没有得到拓展,就会导致在实际工作中出现问题。但目前,很多高职院校的教师知识不够先进,也是阻碍智慧物流领域人才培养发展的重要因素。目前,阻碍智慧物流人才培养发展的重要因素还有教师层面的因素,当下很多高职院校的教师自身的知识体系比较陈旧,实践能力比较落后,因此,导致学生技术方面不强。而高职教师本身很少是源自企业的,并且校企合作所形成的教师培养的人数也是极为有限的,学校设备陈旧,教学资源不足等诸多问题,正在阻碍智慧物流的持续发展。

三、智慧物流人才培养规格的再定位

《高等职业学校物流管理专业教学标准》的出台,可以成为智慧物流人才培养标准的核心文件。要求当代智慧物流人才具备一定的知识能力和综合素养。此外,智慧物流人才培养还需要凸显一些新型的知识技术,比如:大数据、物联网等等,利用这些新型的技术提升物流效率,解决物流问题,突出物流人才的综合素质。达成智慧物流人才层面的培养,此外,还需要关注智能化、信息化层面的技术应用与融入。

(一)信息化应用能力

物流信息化作为现代物流的基础性内容,强调了信息化能力的应用。在操作层面需要对物流管理系统有一定的掌握,能够对资源计划系统、供应链系统等系统有一定的管理和操作能力。

(二)智能化操作能力

在智慧物流产业发展过程中,多种智能设备的出现,本身在人力减少层面有着较强的帮助,在作业的效率层面也有了较强的提高,在未来社会中,少量人工操作智能设备完成工作成为可能。而这些智能设备包括:无人机配送、自动立体仓库、智能分拣设备等等。这些智能设备的应用和操作,是当代智慧物流产业工作人员所必备的技能。

(三)供应链协调与管理能力

智慧物流的产生,意味着产业进入了供应链管理的时代,而由此所形成的人才需求缺口是非常大的,智慧物流的人才是需要具备较强的供应链管理能力、组织、协调等综合素质的,否则,将不能更好地满足智慧物流产业的需要。

四、物流管理专业转型与人才培养再定位的路径

(一)接轨国际标准,基于《悉尼协议》框架转型物流管理专业

在智慧物流人才的培养过程中,技术技能教育显得尤为重要,因此,中国想要快速的进行此方面的人才储备,就需要借鉴国际上先进的人才培养理念。《悉尼协议》是为三年制的人才培养认证而拟定的,面向的是中国高等职业教育的人才。从根本上而言,这一协议的构建,本身也推动了中国“一带一路”模式,形成了国家化的智慧物流人才培养模式。《悉尼协议》的认证标准是严格按照国际标准的,其制定的一些标准和程序,也从根本上构建出了物流专业的模型,《悉尼協议》坚持以“学生为核心”的目标,持续改进传统物流业人才培养的不足,积极调整培养目标和课程体系方案,更强化了信息层面的应用,协调和管理了学生的能力培养,构建出新型的培养标准,提升了学生的综合技术发展空间。