首页 优秀范文 智能制造研究分析

智能制造研究分析赏析八篇

时间:2023-06-01 15:51:07

智能制造研究分析

智能制造研究分析第1篇

关键词:智力资本;VAIC;制药业

中图分类号:F27 文献标识码:A 文章编号:1672-3198(2011)04-0001-02

智力资本作为企业创造价值的重要手段,是决定企业竞争优势的关键。国内外学者从各方面对智力资本做了研究,Riahi-Belkaoui(2003)对81家企业数据进行了分析,结果发现企业的智力资本与财务绩效存在着显著的正相关关系,智力资本是企业利润的重要来源。

制药行业是一个多学科先进技术和手段高度融合的高科技产业群体。在智力资本与中国制药业企业绩效之间的关系上,智力资本有没有对制药企业绩效产生影响?如果有,产生多大影响?带着这些问题,开始了本文的研究。

1、理论基础

1.1智力资本的内涵及测量方法

智力资本作为当今非常热门的词汇,不同的研究者从不同的角度对智力资本进行研究,但智力资本的概念至今没有得到统一认识。笔者综合各方观点,概括智力资本的定义为;智力资本是这样一种无形资产,它使得公司得以运行、没有在账面上完全体现出来、但可以为公司带来价值的资本,是企业拥有或者控制的、能够为企业创造价值和构建持续竞争优势的动态性知识和能力。

智力资本的度量有很多种方法,笔者从数据的可获得性、可靠性及方法的可操作性等方面综合因素考虑,最终采用借鉴Ante Pubhc的智力增值系数法(Value AddedIntelleetual Coefficient,即VAIC法)来测量中国制药企业的智力资本。

VAIC法对业绩的评价包括对财务资本增值效率和智力潜力增值效率的评价两部分。VAIC=CEE+ICE,而其中ICE=HCE+SCE,最终VAIC=CEEq-HCE+SCE。

1.2企业绩效指标的制定及计算

企业绩效的评价方法很多,比如趋势分析法,层级分析法,灰色关联度分析法,平衡计分卡法等,但这些绩效评价方法也有很多的不足。本文综合考虑国内外绩效评价的研究成果及各方面因素的影响,最终从偿债能力、营运能力、盈利能力和发展能力四个方面选取了16个指标,并对这些指标进行融合,从中提炼出一个能较全面反映企业综合业绩的指标作为绩效变量。

本文利用因子分析法,以各因子的方差贡献率占所有因子总方差贡献率的比重作为权重进行加权汇总,得到综合得分F。这个计算结果就是各个企业综合业绩指标,在做实证分析时用到这一指标F,并将其作为公司业绩的替代变量。

2、研究假设与研究模型

2.1研究假设

企业资源理论认为,企业的异质性资源、战略性资源是影响企业绩效的最关键因素。拥有持续竞争优势的资源必须具有以下条件:它必须能为公司创造价值、稀缺性、不可被模仿和替代(Barney1991)。从智力资本的特征(稀缺性、无形性、高度增值性、长期收益性及依附性)来看,智力资本是企业持续竞争优势的资源。

智力资本含有大量的非显性成分,这些成分大多不能从企业的外部得到,只能在企业内部生成。智力资本的异质性是难以模仿和替代的;同时其所包含的知识、经验、技能等对企业绩效、竞争优势具有重要作用的资源也导致智力资本的稀缺性和有价值。可知智力资本已经是当代企业参与竞争的异质性资源,智力资本对企业绩效有着直接的影响。从而笔者提出以下假设:

H1:智力资本与企业绩效之间存在显著的正相关关系。

2.2研究模型

2.2.1变量定义

(1)被解释变量:企业综合绩效的替代变量。

企业绩效在本研究中作为被解释变量。笔者从多方面指标来考察企业绩效,包括企业偿债能力、盈利能力、发展能力和营运能力等16个指标,并采用了因子分析法,从16个指标提取五个主成分,然后通过各个因子所占权重计算出综合绩效F,F能比较全面的反应企业绩效。本文利用综合绩效F作为企业绩效的替代变量,

(2)解释变量:智力资本的替代变量。

本文借鉴Ante Pubhe的智力增值系数法(VAIC法)来测量中国制药业企业的智力资本。

(3)控制变量:企业规模和财务杠杆。

企业绩效的影响因素是多方面的,并不局限在智力资本和财务资本。还有企业规模、负债等其他影响因素。本文再加两个控制变量,以提高回归方程的拟合优度。考虑到中国企业的现实情况,笔者选取了以下两个控制变量:

(1)企业规模=企业主营业务收入的自然对数,记作:QEGM。

(2)财务杠杆=总负债/总资产,记作:CWGG。

2.2.2智力资本与企业绩效之间关系模型的构建

通过以上的分析,本研究构造下面模型来检验相关的理论假设:

模型1:F=β0+β1VAIC+β2QEGM+β3CWGG+e

其中,F代表企业综合绩效指标,β为待估参数,e为随机扰动项。

3、数据来源和实证分析

3.1数据来源

截止2010年7月,中国制药业上市企业共有114家,剔除了11家当年为ST、*ST、S*ST的公司、在2009年1月1日之后上市的14家企业,排除了2家数据不全的企业,最终选取87家上市企业作为样本。考虑到数据的可靠性及准确性,所有数据均来源于上海证券交易所、深圳证券交易所、巨潮资讯网。

3.2智力资本与企业绩效之间关系的实证分析

3.2.1各变量的描述性分析

本文对上市的87中国家制药企业的绩效、控制变量、公司的智力资本及其各个组成部分等各个变量进行了描述性统计分析,以此研究中国制药业上市公司的智力资本及其公司绩效的特点,其分析结果见表1。

从表中得出,每一元的智力资本创造了4.3128元的增值,其中人力资本和结构资本分别贡献了3.39元和0.9229元。每一元人力资本所能创造的企业价值增值是每一元结构资本所能创造的价值增值的3倍多,可见智力增值潜力远大于结构资本的增值。每一元的财务资本创造了0.1707元的价值增值,说明财务资本的增值能力远远不及智力资本及其各组成部分对价值增值的能力。企业综合绩效指标F的均值等于0,可以看出2009年中国制药业整体经营业绩不是很好。企业规模分布在17.9480到23.3641之间,标准差接近1,可见中国大多数制药企业规模处于同一水平,没形成规模效应。医药产业为了提高整体竞争力,需要提高产业集中度、需要有效的兼并与并购。

3.2.2各变量的偏相关分析

针对模型1的情况,以企业规模和财务杠杆作为控制变量,研究智力资本增值系数与企业综合绩效因子之间的

关系。结果见表2。

由表中可知,在0.01水平上,智力增值系数与企业综合绩效因子的相关系数为0.29,说明智力增值系数与企业绩效呈现显著的正向关系。

3.2.3智力资本与企业绩效之间关系的回归分析

本文进一步对智力资本和企业绩效之间的关系作回归分析。以智力资本作为自变量,企业绩效F作为因变量,企业规模和财务杠杆作为控制变量,利用SPSS17.0,对本文的模型1作回归分析,其结果见表3。

从表3中得出模型的R2是0.503,表明企业绩效综合因子的变化可以由智力增值系数解释50.3%。模型的D.w值为2.003,通过了DW检验,残差不存在一阶自相关。F值为30.053,说明回归方程是有效的;其sig值通过检验,说明回归方程显著。综合各项指标说明该模型的总体拟合度较好。表4是智力资本和企业绩效模型的系数表。

表中的第二列说明模型的自变量系数为0.012,t的值为2.856,其sig值为0.005<0.01,通过了t检验,说明自变量VAIC对于因变量――企业绩效有着正向的影响,符合实际意义。由最后两列的容忍度Tolerance(大于0.1)和方差膨胀因子ⅥF(小于5)来看,自变量之间不存在共线性问题。

作为控制变量的财务杠杆的系数是-1.145,t值通过检验,可知中国制药企业过度的利用财务杠杆,使得财务杠杆对企业绩效有着负面的影响。企业规模的系数是0.163,表明中国制药企业的规模总体上还没达到最佳规模点,提高企业规模可以提高企业绩效,这也验证了现实中中国制药企业的多、小的特点。

综合以上几方面:回归方程的检验、拟合优度的判断、回归系数的检验、D.W检验及共线性检验均通过,说明回归方程是有效的。最终得到的模型为:

F=-2.992+0.012VAIC+0.163QEGM-1.145CWGG。

4、研究结论

本文以企业综合绩效指标作为被解释变量、智力资本增值系数作为解释变量、企业规模和财务杠杆作为控制变量设计了模型,综合运用了描述性分析、偏相关分析及多元回归分析等分析方法,研究智力资本对企业绩效的影响,结论是:智力资本与企业绩效之间存在显著的正相关关系。智力资本增值系数在0.01水平上,和企业综合绩效因子的相关系数为0.29。在控制企业规模和财务杠杆的条件下,智力资本增值系数与企业绩效呈现显著的正向关系。模型的回归方程检验、拟合优度判断、回归系数检验、D.W检验及共线性检验均通过,说明回归方程是有效的。每单位的智力资本增值系数可以创造0.012单位的企业绩效,制药企业智力资本与企业绩效之间存在着显著的正相关关系,加强智力资本管理,可以有助于提升制药企业的绩效。

参考文献:

智能制造研究分析第2篇

互动化是智能电网的基本特征之_。为满足电力用户与电力运营商之间的需求交互,通过信息和电能的双向流动,形成互动用电方式。信息互动是互动用电的先决条件之一,电力运营商与各类用户之间,按一定的时间约束,通过必要的双向通信网络,实现数据的收集、处理和,以及控制指令的执行。信息互动建立在高级量测体系(AMI)的基础上,需要安装数以百万计的新型智能电表,用户侧终端设备和部分通信网络都不可避免地以开放形式存在,接入点和可探测路径显著增加。开放的信息技术和用户参与的特性,将导致信息安全事故发生的概率大大提高。正如美国国家标准与技术研究院(NIST)在“智能电网互操作标准的框架和发展蓝图”中所指出的“满足互动用电的信息安全需求,毫无疑问是智能电网建设中优先规划的关键环节。

在美国,由NIST牵头,整合学术界、电力运营商、监管机构和联邦政府机构的有效资源,成立了智能电网的信息安全工作组(SGIP-CSWG),重点针对智能电网环境下的信息安全策略和安全需求展开研究,并逐步制定相关的信息安全标准。该组织2010年2月的研究报告中明确指出“目前信息安全的关键技术领域,还达不到智能电网预想功能、可靠性和可扩展性的要求”。因此,报告中试图对智能电网环境下的信息基础架构进行分析,力求做到综合而彻底地理解安全需求,并从设备、网络和系统等

国家自然科学基金资助项目(50877026,51007022);中央高校基本科研业务费专项资金资助项目(09QG03)。角度,初步提出一些未来的研究课题。其中,因互动用电而带来的关键技术缺失,在研究主题中占据相当数量。国际电工委员会(IEC)的相关工作组也进行了初步探索,提出了互动用电方式下具体的安全需求,并强调相应的解决方法应该与AMI的其他功能同步展开研究。

在国内,信息化和互动化同属于“坚强智能电网”的基本特征,国家电网公司就智能电网的信息化问题也明确指出,信息化是发展坚强智能电网的基础和保障,要始终把自主、可控放在重要位置,保障信息安全,并促进国产化水平提升[12]。依据国家电网公司规划,2010年是全面实施坚强智能电网建设的一年,未来20年,智能电网建设必定将成为电力行业的中心任务,但智能电网的信息安全建设如何进行、何时进行以及相关标准都还不清晰。

针对上述情况,本文通过比较研究的方法,对互动用电方式下的信息安全风险进行了初步分析,并结合国内外研究现状,提炼出互动用电方式下的信息安全特点与难点问题,以提升国内研究机构和电力运营商的重视程度,为智能电网的信息化建设提供探讨与思路。

1互动用电方式下的信息安全风险

1. 1信息安全风险评估

风险是指灾害或事故发生的可能性和造成影响的严重程度。信息安全风险评估是评价网络与信息系统安全最常用的方法。运用定性、定量的科学分析方法和手段,系统地分析信息和信息系统等资产所面临的人为的和自然的威胁,以及威胁事件一旦发生可能遭受的危害程度,有针对性地提出抵御威胁的安全等级防护对策和整改措施,从而最大限度地减少经济损失和负面影响。

通常情况下,风险由信息安全事故发生的可能性及其造成的影响这2种指标来衡量。风险评估方法可分为定性和定量2种:定性方法是依据研究者的知识、经验、历史教训、政策走向及特殊案例等非量化资料对系统风险状况作出判断的过程;定量方法是运用数量指标来对风险进行评估。在定量评估过程中,又将事故发生的可能性和影响程度进一步分解为资产、脆弱性和威胁等风险要素,用威胁发生的概率和系统的脆弱性来量化事故发生的可能性,用资产的价值来量化事故造成的影响程度。就电力系统的信息安全而言,定量方法在评估过程中还存在一些困难,仍处于理论研究阶段。

本文在研究过程中采用定性的评估方法,初步分析互动用电方式下的信息安全风险,并与传统电力系统下的信息安全风险进行比较。具体过程仍从事故发生的可能性和影响程度出发,通过威胁产生的客观条件和主观动机来判断事故发生的可能性;通过事故后果的分析,来判断事故的影响程度。

1.2威胁产生的客观条件

AMI是互动用电的核心环节,承担着信息互动的主要任务。在功能上,AMI是一个用来测量、收集、存储、分析和运用用户用电信息,并实现对智能电表、智能家电等设备远程控制的实时网络处理系统。在组成上,AMI包括智能电表、家域网、用户网关、通信网络和AMI前端系统(见图1)。其中,前三者属于用户端,往往以较为开放的形式存在。

从信息技术的角度,智能电表属于典型的实时嵌入式系统,家域网是通过局域网技术将智能电表、用户网关和各类智能家电连接成的一个有机整体,用户网关是外网与家域网的接口,通常部署在其他设备(如个人电脑、智能电表)中。从通信技术的角度,AMI网络具体采用何种通信媒质并没有定论,但根据IEC的规划,通信过程必然会建立在TCP/IP协议的基础上,采用与IEC61850标准一致的应用层协议™。

根据上述分析,智能电表将采用嵌入式系统实现,并且具备较强的网络功能,而用户网关则部署在个人计算机和智能电表上。理论上,既然可以在任何计算机和软件系统中找到漏洞,那么同样也可以在智能电表和用户网关中找到。AMI网络采用开放的通信协议,也给网络攻击提供了可探测的空间和可潜入的路径。因此,与现有电力系统相比,互动用电方式下的信息安全问题,大大增加了可利用的接入点和访问路径,具备了威胁产生的客观条件。

1.3 威胁产生的主观动机

电力系统信息安全的威胁通常可分为2类:_是客观威胁,来源于通信和信息系统自身的故障,以及工作人员的疏忽大意而导致的误操作;二是主观威胁,指有预谋的攻击,来源于存在不满情绪的内部工作人员、电力市场环境下的工业间谍、网络黑客、病毒程序的传播、恐怖组织与敌对国家等。在研究主观威胁时,需要分析威胁产生的动机,动机的强弱往往决定了网络攻击发生的概率。

在传统的用电方式下:控制系统和重要业务系统以物理隔离的方式封闭运行,提供给威胁源的可操作机会较小;并且从普通用户的角度,进行网络攻击并不能给自己带来直接的经济利益。因此,主观动机并不强烈。

在互动用电方式下:一方面,由于终端和部分通信网络采用开放的方式,给威胁源提供了可操作的机会;另方面,用电负荷将采用网络化的方式收集统计,一旦能通过某种手段篡改计量值,达到偷电的目的,将产生直接的经济利益。在两方面因素的作用下,主观动机将大大增强。

1.4 事故后果分析

根据威胁产生的客观条件和主观动机分析,互动用电方式下的信息安全事故应包括经济性和安全性两方面的后果。经济性后果是指攻击者通过篡改智能电表的计量值,达到窃电的目的,给运营商带来收益损失。

安全性后果是指攻击者通过某种手段,影响电力系统的稳定运行。从发生的机理上分析,目前存在2种可能:_是攻击者向智能电表伪造断开指令使用户停电,极端情况下,能够向数以百万计的智能电表伪造断开指令,很可能造成大范围的停电事故;二是在互动用电方式下,计量值是分析用电情况、制定分时电价和需求侧响应项目的基础,如果篡改计量值的用户达到一定数量,对电网的运行将产生较大的影响,造成安全隐患。

1.5与广域环境下电力信息安全风险的比较

根据上述分析,可以从威胁产生的客观条件、主观动机和事故后果等3个方面,将互动用电方式下的电力系统信息安全与广域环境下的电力系统信息安全进行比较。

由表1可知,2种情况下的信息安全事故后果基本一致,但在互动用电方式下,决定事故发生可能性的主观动机和客观条件都更为充分,由此而引起的信息安全事故的概率将远远大于广域环境下引起的。因此,互动用电方式的引入,对电力系统的信息安全问题提出了全新的需求,是未来智能电网建设不得不面对的关键问题。

2互动用电方式下的信息安全需求

2. 1需求分析

通常意义下,信息安全需求包括保密性、完整性和可用性等3个方面的需求。保密性需求是阻止非授权用户访问信息;完整性需求是阻止非授权用户对信息的篡改或伪造;可用性需求是保证授权用户对信息的访问[2°]。结合互动用电的主要功能和AMI的特点,分别对3种信息安全需求进行分析。

1) 保密性需求

保密性需求可以从互动用电的双方来分析。用户侧存在个人隐私问题,一些用户不希望公开他们所使用的负荷数量、类型和其他信息,因此,智能电表的计量数据需要保密,通过网络传输时也需要有合适的保密机制。运营商侧主要从市场的角度来考虑,一些重要的运行数据需要保密,同时也有责任来保障用户的用电行为隐私[]。

2) 完整性需求

完整性需求是电力系统中最重要的信息安全需求[21],互动用电方式下这种需求同样存在。计量数据和控制指令是AMI系统中传输的2类关键信息,必须防止它们被篡改或伪造。对于智能电表,首先需要有能力对控制指令进行鉴别,判断指令是否被篡改、伪造;其次,智能电表的物理保护未必完善,很难阻止对户外电表的物理攻击,其存储芯片有可能被替换或修改,需要有及时的补救措施,防止该电表在AMI系统中造成不良影响。用户网关需要传递对智能家电的控制指令,也存在完整性需求,同时,由于用户网关部署的灵活性,有可能安装在连接因特网的计算机上,加大了控制命令被篡改、伪造的风险。通信过程将遵循IEC61850体系,基于开放的TCP/IP来构建应用层协议,也需要确保信息的完整性。

3) 可用性需求

过去,自动抄表(AMR)系统的可用性并不是太大的问题,运营商在难以获取计量数据时可以延迟获取,或通过估算的方法获取[11]。但互动用电方式下,量测值和控制指令需要实时或准实时地双向传输,对运营商与用户之间信息交换的可用性提出了很高的要求。需要考虑特定信息不可用时,其对系统究竟有多大影响,具体多大的延时是可以接受的。智能电表和用户网关的可用性,一方面要考虑客观因素的影响,如软、硬件故障,另一方面要考虑人为因素,如物理入侵、网络入侵和拒绝服务攻击等的影响。通信系统的可用性不仅要考虑客观存在的故障因素,还要考虑光纤终端、电磁干扰和流量变化等因素。AMI前端系统的可用性除考虑软、硬件故障的影响外,还需要考虑拒绝服务攻击的影响。

2.2 难点分析

针对上述信息安全需求,解决方法可分为2类。

一类是属于典型的工程技术问题,根据现有的安全标准和研究成果,结合具体的应用对象,可设计相应的解决方案。包括:①通信过程的保密性需求、完整性需求,可根据IEC62351标准和安全通信机制的设计方法,结合计量数据和控制指令的传输需求,设计具体的认证与保密协议;②对于智能电表和量测数据管理系统的保密性需求和完整性需求,可参照变电站智能电子设备(IED)和常规数据ingHouse.Allrightsreserved.wvm.cnkLn—库的访问控制方法,设计相应的权限模型和访问安全模型。另一类是由互动用电特性而引入的难点问题,从现有的研究成果中难以找到可直接应用的方法。总结起来包括如下3个方面。

1) AMI的可用性评估问题。从宏观上来说,可用性的定义是指:网络在给定的时间间隔内,处理阈值以上工作参数的能力。多数情况下可量化为概率指标。AMI的可用性可定义为:在规定的时间间隔内,收集量测值和执行控制指令的能力。AMI的可用性评估是一个非常复杂的问题,主要原因包括:①AMI系统中涉及的对象很多,包括软件、硬件和通信系统丨②传输的报文数量很大,不同的类型有不同的时间要求,而且重要程度也存在差异报文产生和传输过程表现出并发性、随机性等特点不同的安全防御措施,对系统的可用性影响很大。

2) 大规模实时智能设备的密钥管理问题。密钥管理是解决保密性需求和完整性需求的基础,通常包括密钥生成、密钥存储和保护、密钥更新、密钥使用和销毁等。互动用电方式下的密钥管理以用户侧的智能电表或用户网关为主要对象,存在如下典型特点:①规模大,某些城市电网将需要数以千万的数字证书或密钥,以满足用电需求丨②对象以嵌入式系统为主,计算能力和资源有限;③密钥更新和分发机制是密钥管理的核心,从信息安全的角度,密钥的生存期越短,破译的机会越小,但过多的密钥分发又会占用系统的网络带宽,很可能对信息交换过程的实时性产生影响不同类型的用户对用电的可靠性要求存在差异,对密钥管理也提出不同的要求。

3)互动用电过程的异常行为检测问题。即使采用了严格的访问控制机制和安全通信机制,仍难以保证操作系统自身的安全漏洞。在传统计算机网络中,一个普通的蠕虫病毒就可能造成整个网络瘫痪,同样,一个被病毒感染的智能电表,很可能将病毒迅速传播到AMI系统中的其他智能电表中:通过控制开关断开,造成城市配电网的停电事故;通过篡改计量值,造成运营商对用电量的错误统计,并导致直接经济损失和分析决策错误。在计算机网络中,用户可以通过计算机的状态或防病毒软件来判断计算机是否被感染,但智能电表如果存在长期潜伏的病毒或木马,用户和运营商都很难直观地判断出来或察觉到。因此,就引出了互动用电过程的异常行为检测问题,这是一个未知但又充满风险的领域。

智能制造研究分析第3篇

一、智能机器人 

机器人是一种可编程和多功能的,用来完成搬运、安装、焊接、切割等不同任务的操作机,或是为了执行不同的任务而具有可改变和可编程动作的专门系统[3]。 智能机器人则是一个在感知、反应、思维方面全面模拟人的机器系统,融合了机械、电子、传感器、计算机、仿生学、自动控制、人工智能等多学科知识的复杂智能机械,可以代替人从事危险复杂的工作,例如在工业、农业、军事、航天、医疗等多个领域大显身手。目前,各国正加快智能机器人技术的创新与发展,如美国再工业化和工业互联网战略、德国工业 4.0 战略、日本机器人新战略、韩国机器人强国战略等,机器人技术引领当今科技和产业发展态势。中国通过制定“互联网+”行动计划、“中国制造 2025”发展目标、“十三五”规划,,将机器人和智能制造纳入了国家科技创新的优先重点领域[4][5]。 

二、 “智能机器人”和“智能控制”主题热点搜索 

本文以“智能机器人”和“智能控制”为主题进行“学术研究热点”检索,检索结果显示了按照热度值排序的热点主题相关的主要知识点、主题学科名称、热度值、主要文献数、相关国家课题数、主要研究人员数和主要研究机构数。“智能机器人”相关知识点主要有移动机器人、工业机器人、仿人机器人、服务机器人、机器人导航、远程操作、人工智能、神经网络、模糊控制等知识点。 

智能化是机器人控制和产业创新发展的重点。关于“智能控制”的热点知识主要包括模糊控制、神经网络、遗传算法、学习控制、自适应控制、变结构控制、预测控制、专家系统、非线性系统等知识点,这些知识点代表着“智能机器人”主要研究方向。 

三、“智能机器人”和“智能控制”主题学术趋势和研究发展 

CNKI数字图书馆提供“学术趋势”检索功能,为科研工作者了解“智能机器人”发展趋势提供了非常好的工具。本文通过“学术趋势”功能检索“智能机器人”和“智能控制”主题的学术趋势,图中不仅提供学术关注度,还提供热门被引文章供读者深度研究。图2显示智能机器人和智能控制方面的从1997年至2015年论文收录量逐年增大,2015年收录量达1343篇。读者可以从图2中及时掌握每年学术热点论文,从中深入学习“智能机器人”的具体研究方法和科研理论,为理论创新寻找突破口。 

另外,CNKI数字图书馆还具有“指数”功能,通过对“智能机器人”和“智能控制”主题进行检索,得到以下各项信息: 

“学术关注度”和“媒体关注度”是我们进行科学研究时比较关注的两个方面。通过对关注度的分析发现最近三年科研工作者和媒体对智能机器人的关注度剧增,预示着国家加大了“智能机器人”领域的投入和研究力度。 

“关注文献”和“研究进展”搜索功能为读者提供了当前“智能机器人”领域高被引论文、下载量比较大的论文以及最新相关论文,为科研工作者迅速把握“智能机器人”研究的内容和研究趋势提供帮助。 

“学科分布”为读者提供“智能机器人”和“智能控制”在不同学科领域的研究情况和“相关词”的统计情况。通过分析可知,移动机器人、智能制造、人工智能、路径规划、机器视觉、图像处理、虚拟现实、语音识别、声源定位等是分布在不同学科领域的“智能机器人”相关词,也是“智能机器人”目前重要的学术研究方向;单片机、模糊控制、神经网络、智能家居、智能电网、物联网、RFID、ZigBee、无线传感器网络、智能交通等是分布在不同学科领域的“智能控制”的相关词。因此,我们通过它们可以了解到跨学科智能机器人的研究动向。 

“机构分布”显示了哈尔滨工业大学、哈尔滨工程大学、上海交通大学、清华大学、浙江大学、中国科学院沈阳自动化研究所等多所研究机构是文献的主要提供单位,这为读者认识机器人研究机构提供参考。 

结论 

CNKI数字图书馆提供的“学术研究热点”、“学术趋势”和“指数”功能为我们展示了“智能机器人”和“智能控制”的研究热点和学术研究方向,为读者科研选题和科学研究提供学术参考。通过对“智能机器人”关键知识点的、经典科研论文和最新科研论文的深度分析,探索和挖掘智能机器人发展的技术空白点,发现最新研究方向。目前大学图书馆的资源整合和智能搜索功能还比较弱,需要进一步加强图书馆智能搜索引擎的构建和其他智能交互平台建设才能提高图书馆资源利用率和服务效能。 

参考文献: 

[1]陈臣. 基于大数据的图书馆个性化智慧服务体系构建[J]. 情报资料工作,2013,06:75-79. 

[2]王长全,艾雰. 云计算环境下的数字图书馆信息资源整合与服务模式创新[J]. 图书馆工作与研究,2011,01:48-51. 

[3]任福继, 孙晓. 智能机器人的现状及发展[J]. 科技导报, 2015(21). 

智能制造研究分析第4篇

[关键词]制造业;中小企业;智力资本;多元线性回归

[中图分类号]F270 [文献标识码]A [文章编号]1006-5024(2013)07-0087-04

[作者简介]李博,西北农林科技大学经济管理学院硕士生,研究方向为企业管理;

李桦.西北农林科技大学经济管理学院副教授,博士,研究方向为企业管理。(陕西杨凌712100)

一、引言

Bontis(1998)是较早对智力资本与企业之间关系进行实证分析的学者。随后,大多数学者选择不同角度对智力资本与企业之间的关系展开论证。

一种是基于不同路径影响关系的论证。这一类型论证可分为三类:主效应模型、缓冲效应模型以及调节效应模型。主效应模型认为,智力资本对企业相关业绩有直接影响关系。相关研究中大多认为智力资本与企业相关绩效之间为正相关关系,且随着企业绩效不断提高,智力资本对企业绩效的贡献逐渐增大。缓冲效应模型认为,智力资本对企业相关业绩的影响是间接作用过程,例如,跨职能整合和副产品生产以及过程弹性和产品创新等是企业智力资本与企业相关绩效的中介变量。调节效应模型认为,智力资本对企业先关业绩的影响并非孤立存在,企业相关业绩的不同是智力资本与调节变量综合作用的结果。例如,知识管理和环境要素等都能够对智力资本与企业相关绩效关系起调节作用。

另一种是基于不同研究方法的论证。在已有文献中,数据获取主要来源于报表披露和调查问卷。数据来源于报表披露的相关研究多采用多元线性回归以及分量回归,并且以运用奥地利智力资本研究中心Pulic等人开发的智力增值系数(VAIC)方法(2004)进行相关研究的较多。由于智力增值系数(VAIC)在指标选取上较为单一,相关学者开始引入较为综合和全面的指标,以充分考察智力资本与企业之间的关系。数据来源于问卷调查的相关研究多采用结构方程模型进行论证。这类研究多在于探索智力资本各要素之间的相互作用关系以及智力资本各要素与企业相关绩效之间的影响路径。

因此,纵观国内外的相关研究,国外在相关理论问题上发展较为成熟,而国内研究基本基于国外已有智力资本理论研究成果。在对智力资本与企业关系的研究上,相关学者认为智力资本会对企业的创新、成长、竞争优势、绩效以及价值产生影响,但影响路径、影响方向和影响程度大小与企业性质、企业文化等一些外在变量有关。

一般来说,规模经济是伴随着企业生产规模扩大应运而生的产物。在相关的智力资本研究中,企业规模多作为控制变量引入模型。也就是说,相关学者普遍认为规模是影响企业相关绩效的一个重要因素,但并未将其作为研究重点。由规模影响企业所表现出来的更深层次含义是,企业内外部资本结构不同,导致企业之间的创新、成长、竞争优势、绩效以及价值存在差异。也就是说,在不同规模下,资本结构对企业的影响路径有所不同。

在已有研究中,研究对象多为知识密集型的信息技术等行业,因此,结合已有研究成果,本研究以中小制造业上市公司为研究对象,采用智力资本四要素结构划分,包括人力资本、创新资本、流程资本和关系资本,探究智力资本要素对企业价值的影响关系。

二、研究假设

人力资本是一种非物质资本,它是体现在劳动者身上、并能为其带来永久收入的能力。大多数学者在相关研究中都证明了人力资本对企业相关绩效和价值有显著的促进作用。然而,李嘉明等(2005)虽然证实了人力资本与企业绩效的正相关关系,但其指出化工原料和服装原料这类劳动密集型行业并不支持这一结论。因此,本研究认为,中小企业的人力资本对制造业企业价值提升不存在显著影响关系。基于此,本研究提出假设:

H1:在中小制造业企业中,人力资本对企业价值提升可能不显著。

结构资本是一种能够内化到企业中的资本,即便雇员离开,也能够存在于企业组织、结构、过程和文化中。在小型创新型企业中,结构资本是企业绩效的首要决定因素。结构资本包含两个概念,即创新资本和流程资本。

创新资本不仅包括用于研究开发新产品和服务的无形资产,还包括创新和革新能力。在相关文献中,多以专利数、研发支出、无形资产以及新产品推出数来衡量企业的创新资本。一般来说,小企业的创新水平较高,在一些行业中甚至超过了大企业。相对于大企业来说,中小企业得以生存的主要原因在于创新。创新是企业实现差异化的最主要原因,是中小企业可以和大企业进行竞争的资本。基于此,本研究提出假设:

H2:在中小制造业企业中,创新资本对企业价值提升为显著的正相关关系。

流程资本是企业在长期经营过程中,逐渐累积起来的最为有效的工作方式和流程,包括运作结构、管理、文化及组织氛围等。Hormiga等(2011)认为,新创企业的结构资本在短期内很难被内化到企业中去,结构资本对企业绩效的影响较难衡量。由于流程资本是企业经过长时期的经营沉淀在企业内部的,因此,中小企业的流程资本未能累积到足够发挥作用水平,可能对企业价值影响不显著。基于此,本研究提出假设:

H3:在中小制造业企业中,流程资本对企业价值提升可能不显著。

关系资本,Sveiby(2000)把这一维度叫做外部构成,它包括和客户以及供应商的关系、产品名称、注册商标、声誉和形象,投资于这些资产产生的是不确定的收益。张宗益(2011)认为在制造业、信息技术业和房地产业,关系资本对企业绩效的影响关系不显著。李冬伟(2012)认为关系资本仅对成熟期企业的盈利能力有显著促进作用。基于此,本研究提出假设:

H4:在中小制造业企业中,关系资本对企业价值提升可能不显著。

三、研究设计

(一)样本数据说明

据中国证监会CSRC行业分类标准,本研究以沪、深两市A股制造业企业为研究对象,数据来源于巨潮资讯网和新浪财经披露的上市公司财务报表。本研究根据国家企业规模划分标准,员工人数在2000人以下、资产总额在40000万元以下或者销售额在30000万元以下的企业被划分为中小企业。在剔除了所有ST和PT企业后,按照随机分层抽样原则,从制造业下属的各子行业中随机抽取了210家企业。基于智力资本对企业价值影响存在一定时间间隔,且为防止随机波动和数据中的异常值,本研究的研究期限为2009-2011年,智力资本要素取值在2009年,因变量取值为2009-2011年三年平均值。

(二)变量测量

1.因变量选取。本研究选取Tobiff′s Q为因变量,用于衡量上市公司的企业价值。James Tobin(1969)把To-bin ′s Q定义为企业的市场价值与资本重置成本之比,用于估计企业未来的现金流。Tobin′s Q能够反映金融市场对企业真实经济行为的影响,它被广泛用于测量企业价值和市场绩效,这一指标的近似计算公式为Q=(市场价值+优先股价值+负债)/账面总资产。

2,自变量选取。国外最先对智力资本的测量问题进行了研究。由于存在传统财务报告中相关信息缺乏以及会计方法缺陷,已有研究还未发展出能够被广为接受的确定组织智力资本的标准。Skandia是第一个系统的评价无形资产并且将其作为财务报告的一部分面向公众的公司。这个评价体系使用了多达91个智力资本指标和73个传统指标测量五方面内容,如财务、顾客、过程、创新和发展以及人力资本,这些指标最终转化为比率和货币价值两类指标。因此,本研究以已有研究为基础,选择若干指标对智力资本进行度量。

结合制造业在新时期的发展战略,人力资本主要从员工角度度量,创新资本主要从研发角度度量,流程资本主要从管理运作角度度量,关系资本主要从顾客和供应商两个角度度量。智力资本指标主要从资本存量和流量两个角度进行选取,相关指标的测量不仅体现了企业现有的资本水平,还反映了企业在这一时期的资本投资。本研究智力资本要素测量指标基本来源于已有研究文献对智力资本的测量,且考虑了我国上市公司财务报表披露的现实情况。相关变量测量以及定义说明见.表1。

四、智力资本与企业价值分析

本研究采用多元线性回归分析,模型1、模型2、模型3、模型4分别反映了控制变量与人力资本、创新资本、流程资本和关系资本对企业价值的影响,模型5采用后退法综合分析了智力资本四维度和控制变量对企业价值的影响。结果显示(见表2),变量间不存在显著自相关和多重共线性,且智力资本各维度与企业价值之间为显著的线性关系。总体来看,流程资本这一维度对企业价值的解释力较强,能够解释企业价值13.9%的变化。控制变量资产负债率在五个模型中均表现出与企业价值显著负相关的关系,表明企业逐渐增大的财务风险阻碍企业价值的提升,且在中小制造企业中资产负债率已超过最优负债水平。

模型1表明,与假设H1不同,人力资本对企业价值提升存在显著影响。其中,员工人数(β=-0.201,p

模型2表明,与假设H2不同,创新资本对企业价值提升存在负向影响关系。研发强度(β=0.301,p

模型3表明,与假设H3不同,流程资本对企业价值提升存在显著影响。其中,管理费用率(p=0.323,p

模型4表明,与假设H4不同,关系资本对企业价值提升存在显著影响。销售费用率(β=0.144,p=0.1)和客户集中度(p=0.164,p

模型5的结果反映了智力资本和控制变量共同影响企业价值的相关关系。其中,创新资本对企业价值的影响最大,但研发密度(β=-0.395,p

五、结论与启示

智能制造研究分析第5篇

关键词:人工免疫;故障;智能分析

中图分类号:TP18 文献标识码:A 文章编号:1009-3044(2015)13-0167-02

Abstract: with the advancement of industrial technology, process control system technology is becoming more and more complex and integrated in the control system to monitor, discovery and troubleshooting system plays an important role. The fault analysis as a basis for the industrial process automation detection, intelligent analysis is particularly important, in today with the rapid development of computer technology, the working mechanism of artificial immune system inspired and based on artificial immune fault intelligent analysis research provides a theoretical basis.

Key words: artificial immune; fault analysis; intelligent

从控制论配提出到现在,在科技不断进步的同时,过程控制技术已经发展成为现代工业领域中一个重要的组成部分,在化工、电力、石油、冶金和钢铁产业中应用极为广泛。在过程控制系统逐渐复杂化和规模化的今天,系统通常被用于各种较为极端的危险环境中,一旦过程控制系统出现问题,不仅仅是设备出现问题,严重可能会发生重大安全事故,造成人员伤亡。事故所产生的损失,远远高于系统本身的损坏,对行业发展造成难以想象的危害。在实际情况中,对基于人工免疫的故障分析系统的应用和推广,建立较为完善的故障智能分析系统对工业的发展十分重要。在故障智能分析系统的使用中,提早发现和排除故障,保障设备和工业生产的正常安全进行。

1 故障分析存在的问题

故障分析系统发展到今天,许多故障分析和检测的方法已经在研究中被提出,在实际生产中,这些理论研究被广泛应用,但是在应用效果上,仍然存在很多需要解决的问题,具体主要包括以下几种情况:

1.1 据压缩问题

在计算机网络逐渐在各种工业中的应用过程中,传感器检测的状态数据大量的被储存在计算机中,随着时间的不断积累,数据的存储量逐渐增多。因此,工业中运用的计算机中储存了大量的历史数据。这种情况使得计算机在后期的故障分析中很慢有效的完成数据整理。

1.2 故障样本难以获取

在计算机数据存储能力不断提升的同时,计算机对工业设备的正常运行分析数据读取较为容易,但是在故障数据传输中,计算机不容易获得。这造成计算机很难对存在大量数据的故障及时有效的作出分析。

1.3 缺乏具有在线学习能力的故障分析方法

在工业的生产过程中,在技术更新的同时,设备也会出现一些新的问题。由于现有的故障风险系统(如神经网络系统)不具备在线学习的能力,需要人为的对故障分析系统中故障类型样本进行更新,降低了系统的工作效率,有可能造成重大安全事故的发生。因此,对故障分析系统的在线学习能力的加强十分必要。

2 基于人工免疫的故障智能分析实现

所谓的故障智能分析系统就是通过对设备运行的过程中,系统对设备产生的故障进行智能分析,保证系统能够准确有效的对故障进行分析。故障智能分析系统对设备故障发现可以使得工作人员及时对故障做出反应和处理措施,减少从发现故障到问题解决之间的工作时间,确保安全生产和高效生产,降低运行成本。

在工业的设备不断复杂的过程中,传统的故障分析系统难以满足工业发展需求,工业中急需具有故障智能分析的系统代替原有的系统,以应对工业生产中日趋严峻的生产形势。生物的免疫系统是一种可以学习、记忆、新事物识别和自我不断更新的系统,它是一种具有智能的控制系统。通过准确识别各种入侵病原体的本体并及时将病原体消灭。故障智能分析系统具有和人体免疫系统相同的运行机制。通过借鉴免疫系统对问题的分析与处理过程,探索可以与免疫系统相似问题处理过程,准确迅速的识别设备的故障,是本文研究的主要目的。

故障智能分析的过程如图1。

将现场采集的样本数据预处理后储存在计算机的运行空间中,利用故障检测装置对样本数据进行匹配计算。如果结果一致,说明设备发生故障。通过记录下匹配的数据,在故障智能分析系统中对故障类型进行激活和智能判断记录。

2.1 故障样本归属判定

为了是吸纳系统中对各种可能发生的故障的涵盖,本文提出的故障智能分析系统中可以存在检测器之间的范围重叠。这样可能会长生另外的问题,即不同的故障检测装置在故障检测过程中可以对同一异常检测,数据分析计算机网络在对故障进行匹配时发生对个检测装置产生同一故障显示。所以,需要对故障进行一个检测的归属划分。

1)最近距离机制:在检测装置进行模拟训练时,按照故障在检测装置中的“距离优先” 进行模拟训练,在后期的应用于训练保持一致性的原则下,对故障进行“距离优先” 的原则进行样本的归属划分处理,应用对应的分析装置。

2)最大数量机制:在使用“距离优先” 原则对检测装置进行模拟训练时,在故障发生检测装置仲裁时要进行检测装置数量判断。统计出同类故障在各个检测装置中出现的次数,判断出现次数最多的检测装置对该类故障的存在进行激活。当故障智能分析方法中使用的初始检测器是由故障样本直接产生的,由于省略了训练过程,在面临多检测器被激活要判定被检出样本的归属时,既可以采用“最近距离”机制也可以使用“最大数量”机制。

2.2 检测器更新

在故障智能分析系统中导入具有更新功能的运行机制。通过借鉴免疫系统运行记录,被事故激活的检查装置要能够对自身进行复制和更新。在故障分析数据中,激活检查装置的复制功能是将故障数据在同类检查装置中激活,更新则是对事故的储存空间进行位置预留。可见,实现克隆选择的方法有很多种。为了实现算法的自动收敛,而不用如上一章的故障检测方法中通过规定检测器总数控制检测器的更新,本章提出了一种新的检测器更新实现。在故障智能分析完成后,被检测出的异常点不用于直接产生新检测器而是被移动到其所属的检测器边缘上,在新的位置计算该点是否被自体或其他的检测器覆盖。

3 总结

在工业设备逐渐集成化和复制化发展的今天,故障分析系统对设备运行的检测和控制尤为重要,通过及时发现故障,排除故障,保障设备的正常运行,对工业发展的安全生产越来越重要。本文正是在免疫系统各种智能机理的启发下,对基于人工免疫的故障智能分析方法进行了相关探索。

参考文献:

[1] 王维,张鹏涛,谭营,等. 一种基于人工免疫和代码相关性的计算机病毒特征提取方法[J]. 计算机学报. 2011(2) .

[2] 郑蕊蕊,赵继印,赵婷婷, 等. 基于遗传支持向量机和灰色人工免疫算法的电力变压器故障分析[J]. 中国电机工程学报. 2011(7).

[3] 赵宏伟,张清华,夏路易. 基于证据理论及人工免疫的旋转机械并发故障分析研究[J]. 广东石油化工学院学报. 2011(3).

[4] 李蓉一. 基于核主元分析的故障检测与分析研究[D]. 南京师范大学,2011.

[5] 吴康. 基于SVM与小波变换的微小型无人直升机传感器故障分析[D]. 浙江大学,2010.

[6] 潘腾. 基于虚拟样机的四驱采煤机搬运车的研究[D]. 太原理工大学,2010.

智能制造研究分析第6篇

中国工程院院士 、中国智能制造百人会专家委顾问李伯虎,国家智能制造标准化专家咨询组副组长、中国工程院制造业研究室董景辰教授、电子工业出版社总编辑兼华信研究院院长、中国智能制造百人会理事长刘九如、百人会专家委主任清华大学范玉顺教授、北京航空航天大学刘强教授、工信部电子元器件中心总工程师郭源生、卫华集团总裁俞有飞、广汽集团总经理助理郑利苗等共计约300人出席了会议。

电子工业出版社总编辑刘九如在致辞中指出,中国智能制造百人会是一家旨在促进行业信息交流,推动企业创新合作,专注智能制造热点问题研究,支撑中国制造2025纲要实施的产业联盟组织。目前已经联络了中国智能制造领域的院士、专家和企业家,开启相关调研和研讨活动,为政府和企业提供信息研究支撑。他同时也分享了国家发改委、工信部、科技部等部委在智能制造领域的最新政策信息。

中国工程院院士李伯虎在做《智慧云制造中大数据技术研究、应用探索与实践》主题报告时指出,我国制造业正面临全球新技术革命和产业变革的挑战:新一代信息通信技术快速发展并与制造业的深度融合,正引发制造业发展理念、制造模式、制造手段、技术体系、和价值链重大变革;中国制造业大而不强,正面临从价值链的低端向中高端,从制造大国向制造强国、从中国制造向中国创造转变的关键历史时期;国际制造业发展态势和竞争格局面临重大调整;我国经济发展和国家安全对制造业发展提出了更高要求。在这一背景下,基于我国制造业信息化的相关技术,李伯虎院士带领团队在2009年提出了云制造的理念,在2012年提出了智慧云的实践。所谓的智慧云制造,是一种基于泛在网络,以人为中心,互联化、服务化、个性化、社会化的一种智慧制造新模式和新手段。

中国工程院制造业研究室教授董景辰在解读智能制造“十三五”发展规划及2017年工作重点时指出,工信部的《智能制造发展规划(2016-2020年)》,标志着智能制造正式上升至国家战略层面,对推动我国制造业供给侧结构性改革、打造制造业竞争新优势、加快制造业转型升级具有重要意义。董景辰教授认为,2017年的工作重点需要紧抓《规划》中提出的十大任务,促进传统制造业在重点领域基本实现数字化制造,为产业的转型升级奠定基础。

工信部电子标准化研究院物联网研究中心主任胡静宜在作《国家智能制造标准体系建设》专题演讲时提到:标准的建立是智能制造战略推进的基础,作为《中国制造2025》行动纲要的主攻方向,智能制造是落实工业化和信息化深度融合、打造制造强国的战略举措。而国家智能制造标准体系建设,将充分发挥标准在推进智能制造发展中的基础性和引导性作用,指导当前和未来一段时间内智能制造工作的推进。

工信部信通院信息化与工业化融合研究所主任刘默从信息通信技术从业者的视角详细阐述了在智能制造背景下信息通信技术怎样融入到制造体系,给制造体系带来智能化提升。

范玉顺教授在上午最后的时间段分享了“复杂服务网络特性分析”的主题报告。他指出,未来的世界是非常驮拥姆务网络,并会形成以服务为核心的价值网络――服务互联网。未来的企业都会成为服务型企业,通过服务共生关系形成服务组合主题演化路径图,建立关联模型,从大数据的角度对服务做关联分析,选择推送关联服务,对提高企业的运作效率和性能会有很大的作用。

下午的专题论坛由主办单位《中国信息化》杂志执行社长熊伟和专家委员代表工信部电子元器件中心总工程师郭源生教授、中科院计算所研究员张云泉教授分别致辞。下午高峰论坛共分“智能制造“、“互联网+”和产融协同”三个专题部分。

在“智能制造”专题报告环节,中航工业成飞生产管理部部长隋少春介绍了成飞在智能制造方面的最新进展,“我们开始是对工艺技术进行研究,形成可实施的具有重要意义的数据库。在工艺数据库的基础上进一步研究,开发了智能工艺系统,获得2016年技术发明二等奖。未来的智能制造是基础,它可以细化到更细的颗粒度和每一个零件。我们会继续关注智能装备、工业无人机的使用,从而来辅助人工生产。”

艾普工华市场总监杨凯在演讲中表示,企业要实现智能化的转型,先要达到数字化转型,才能为智能化打下基础。在智能化或在数字化的前提情况下,企业的运营模式需要发生转化:原来是以产品为中心,现在要以客户为中心;企业要实现精细化的管控,从原来的粗放式转为精细化,成本和资源以及人才需要实现精细化的管控。决策的过程要科学化,要有数据做驱动决策。对目前的制造企业而言,这些既是新的机遇,也是新的挑战。

面对“智能制造共性技术与应用”这样的主题,业内专家从智能制造实践三部曲(工艺、设备、管理)、智能工厂的实施维度和CPS标准化等方面展开了研讨。

在随后“互联网+”专题论坛上,浪潮集团供应链与制造业产品部总经理焦学瑞、南京信息工程大学司良信教授分别作了《浪潮智造+,加速制造业数字化转型》和《虚拟现实可视计算技术在“中国制造2025“ 领域的产业化应用》的主题报告。中科院计算所研究员张云泉等专家就 “制造业+互联网融合发展面面观”进行了交流。

智能制造研究分析第7篇

关键词:电力系统;智能终端;安全挑战与风险;安全防护

0引言

为应对全球节能减排、能源综合利用效率提升的挑战,发展能源互联网成为推动后危机时代经济转型、发展低碳经济的重要手段[1]。能源互联网的建设使得现代电网向开放、互联、以用户为中心的方向发展,实现多类型能源开放互联、各种设备与系统开放对等接入。2019年,国家电网有限公司提出了“三型两网”的战略发展目标,在建设坚强智能电网的基础上,重点建设泛在电力物联网,以构建世界一流能源互联网。泛在电力物联网将充分应用移动互联、人工智能等现代信息技术和先进通信技术,实现电力系统各个环节万物互联、人机交互,打造电网状态全面感知、信息高效处理、应用便捷灵活的能力。泛在电力物联网的建设主要包括感知层、网络层、平台层、应用层4个部分,其中感知层重点实现终端标准化统一接入,以及通信、计算等资源共享,在源端实现数据融通和边缘智能。在此背景下,智能表计、新一代配电终端、源网荷友好互动终端、电动汽车充电桩等多类型电力系统智能终端在电网中得以广泛应用[2],成为连接电力骨干网络与电力一次系统、用户的第一道门户。电力系统智能终端作为能源互联中多网“融合控制”的纽带节点,实现了电网监测数据的“本地疏导”以及电网对外控制的“功能聚合”[3],其安全性直接关系到电网的安全稳定运行,研究电力系统智能终端的信息安全防护技术意义重大。

针对电力系统信息安全防护问题,自2002年起中国提出了以网络边界隔离保护为主的电力二次安全防护体系[4],有效保障了电力监控系统和电力调度数据网的安全稳定运行。电力二次安全防护体系制定了“安全分区、网络专用、横向隔离、纵向认证”的安全防护策略,重点强调了通过内网隔离保护的方式确保电力二次系统的安全防护[5],然而对新形势下电力系统智能终端的安全防护并未考虑。一方面,与传统信息安全相比,泛在电力物联网中各环节数亿规模终端具有异构与分散特性,后天标准化的终端自身安全防护理论与技术难以获得,如何兼顾实时性和安全性双重约束进行电力系统终端自身安全防护成为需要考虑的问题,电力系统智能终端自身安全性保证需求迫切。另一方面,随着泛在电力物联网建设推进,电力系统智能终端广泛采用无线传感网络等公共网络与电网主站系统进行通信[6],在电力二次安全防护体系隔离保护边界外形成具有泛在互联、开放共享特性的边缘计算网络。这必然会将网络攻击威胁传导至电力系统本体,使得因网络攻击造成的大停电风险陡增。

为应对以上安全威胁,2014年国家发改委和能源局了《电力监控系统安全防护规定》[7],要求电力生产控制大区设立安全接入区,对使用无线通信网等方式纵向接入生产控制大区的电力系统智能终端进行网络隔离。因此,在当前网络攻击手段呈现高级定制化、特征不确定化的严峻形势下,如何解决异构多样、数量庞大的电力系统智能终端边缘接入过程中的网络攻击实时监控发现和防渗透成为需要考虑的另外一项重要问题。

为此,本文围绕电力系统智能设备安全互联需求,首先分析电力系统智能终端业务特征和信息安全风险,明确电力系统智能终端信息安全防护特性;在此基础上,本文总结提出了电力系统智能终端信息安全防护面临的关键技术问题;然后,设计构建了覆盖芯片层、终端层、交互层的电力系统智能终端信息安全防护研究框架;最后,对电力系统智能终端信息安全防护关键技术进行了展望。

1电力系统智能终端信息安全风险

近年来网络空间安全事件频发,部级、集团式网络安全威胁层出不穷[8-10]。电力等重要基础设施领域成为“网络战”的重点攻击目标之一,信息安全形势异常严峻[11]。2010年“震网”病毒事件中,西门子可编程逻辑控制器(PLC)终端受病毒攻击导致1000多台离心机损毁,使得核电站瘫痪。2015年乌克兰停电事件,以终端为攻击跳板瘫痪电力控制系统导致,成为全球首例公开报道的因黑客攻击导致大范围停电事件[12]。以上事件均表明,电力系统智能终端已成为攻击电网的重要目标和主要跳板[13],面临着严峻的信息安全风险。本文从信息安全防护的保密性、完整性、可用性3项重要目标角度出发[14-15],结合电力系统智能终端的组成结构和业务特征对信息安全风险进行分析,具体涉及芯片层、终端层、交互层3个方面,如图1所示。

1)芯片层:电力系统智能终端芯片自主可控性和安全性不足,在非受控环境下面临后门漏洞被利用风险。

2018年Intel芯片漏洞事件,爆出Intel芯片存在融毁漏洞以及幽灵漏洞,利用该漏洞进行攻击,可获取用户的账号密码、通信信息等隐私,智能终端均受波及,电力系统智能终端芯片同样面临漏洞、后门隐患的巨大问题。随着电力系统智能终端的开放性逐渐增强,与外界交互范围逐渐扩大,电力系统智能终端芯片安全性的不足逐渐凸显,主要表现在电力系统智能终端芯片自主可控程度低、芯片安全设计不足,导致当前电力系统智能终端存在“带病”运行,漏洞隐患易被攻击利用造成安全事件。为此,需要在芯片层面提高电力系统智能终端芯片的安全性,从芯片层面提高电网的安全防护能力。

2)终端层:异构电力系统智能终端计算环境安全保证不足,存在终端被恶意控制破坏的风险。

据数据统计表明,目前中国电网已部署各类型电力系统智能终端总数超4亿,规划至2030年接入各类保护、采集、控制终端设备数量将达到20亿。各类电力系统智能终端覆盖了电力“发电、输电、变电、配电、用电、调度”等各个环节,终端形态各异且业务逻辑差异巨大。终端复杂多样的嵌入式硬件计算环境、异构的软件应用环境和多类型私有通信协议等特性,使得其安全防护尚未形成统一标准。各类终端安全防护措施和水平亦参差不齐,在面对病毒、木马等网络攻击时整体安全防护能力薄弱。同时,电力系统智能终端在研发、生产、制造等环节无法避免的漏洞后门隐患也存在被攻击者利用的巨大安全风险。随着电力系统智能化水平的不断升级,各类型电力系统智能终端越来越多地承载了大量异构封闭、连续作业的电力生产运营应用,运行可靠性、实时性要求较高。电力系统智能终端一旦遭受恶意网络攻击,将可能导致终端生产监测信息采集失真,甚至造成终端误动作引发停电风险,传统事后响应型的终端被动防护技术无法满足电力安全防护的需要。因此,确保电力系统智能终端软硬件计算环境安全的标准化防护技术,以及事前防御型的主动防御技术研究需求迫切。

3)交互层:电力系统智能终端广泛互联互通导致网络开放性扩大,引入网络攻击渗透破坏风险。

泛在电力物联网的建设,其核心目标是将电力用户及其设备、电网企业及其设备、发电企业及其设备、供应商及其设备,以及人和物连接起来,产生共享数据,为用户、电网、发电、供应商和政府社会服务。以电网为枢纽,发挥平台和共享作用,为全行业和更多市场主体发展创造更大机遇,提供价值服务。因此,泛在电力物联网环境下的电力系统智能终端将广泛采用电力无线专网、NB-IoT、北斗定位、IPv6和5G等无线、公共网络与电网主站系统进行通信,使得电力系统智能终端的通信交互形式将呈现数量大、层级多、分布广、种类杂等特点,极大地增加了遭受网络攻击的暴露面。无论是电力系统智能终端,还是主站电力系统,被网络攻击渗透破坏的风险均进一步增大。在当前网络空间安全异常严峻的形势下,新型网络攻击手段不断衍变衍生,呈高级、定制化、持续性发展,尤其是面向工控环境的攻击更具有高度定制化、危害大的特点,使得电力系统智能终端通信交互过程中面临着新型网络攻击被动处置的局面。例如在乌克兰停电事件中,黑客通过欺骗电力公司员工信任、植入木马、后门连接等方式,绕过认证机制,对乌克兰境内3处变电站的数据采集与监控(SCADA)系统发起攻击,删除磁盘所有文件,造成7个110kV和23个35kV变电站发生故障,从而导致该地区发生大面积停电事件。

综上可知,电力系统智能终端面临的芯片层、终端层信息安全风险主要由终端芯片、计算环境安全性不可控和漏洞被利用等原因造成,可归纳为终端“自身安全”问题。交互层信息安全风险产生的原因主要为电力系统智能终端在互联接入过程中存在被渗透攻击可能性造成的,可归纳为“攻击防御”问题。

2电力系统智能终端信息安全防护技术问题剖析

为了解决电力系统智能终端“自身安全”和“攻击防御”问题,国内外学者开展了诸多信息安全防护技术研究,主要从传统信息安全的角度探索密码技术在终端自身数据保护、通信协议安全、安全接入传输方面的应用[16]。然而,受制于当前中国的芯片自主可控水平限制,以及电力系统智能终端异构多样的复杂计算环境和高安全、高实时运行特性限制,加之网络攻击特征不确定的混合约束,电力系统智能终端的整体安全防护尚存在待突破的技术问题,具体如下。

1)技术问题1:覆盖电路级、CPU内核及片上内嵌入式操作系统的芯片全通路安全防护机制及适应各类异构终端的普适性主动免疫问题。

根据安全风险分析可知,解决电力系统智能终端“自身安全”问题,必须实现芯片安全和终端计算环境安全。

在电力系统智能终端芯片层,面临的安全隐患表现为芯片各层次防护理论和技术无法满足安全需求。然而,当前电力系统智能终端采用了大量先进工艺条件制造的芯片,此类芯片主要由国外掌控,自主可控程度很低,其安全性保障技术更是存在空白。随着中国自主先进芯片技术发展,电力系统智能终端芯片在实现自主可控的同时应充分考虑芯片的安全防护,同步设计、同步发展。首先需从芯片设计理论的安全建模方面进行技术突破,确保理论层面的可证明安全。其次,应突破电路级、CPU内核以及片上内嵌入式操作系统等芯片核心组件的安全防护技术,从而构建芯片全通路安全防护技术体系。在电力系统智能终端计算环境安全方面,由于电力系统智能终端异构多样、资源受限、长期运行,传统终端被动式、个性化安全技术无法适用。因此需开展结合芯片层面的终端安全技术研究,构建适用于电力系统智能终端不同硬件架构、不同系统环境、不同应用环境的标准化安全防护框架,且能够在网络安全事件发生前、发生时确保终端计算环境的安全性和完整性,最终形成电力系统智能终端的普适性主动免疫技术体系。

2)技术问题2:攻击特征不确定、终端/业务/网络强耦合条件下,终端安全状态建模、精确感知及威胁阻断问题。

解决电力系统智能终端“攻击防御”问题,重点需突破电力系统终端远程接入交互过程中的攻击监测和防渗透技术。然而,电力系统智能终端点多面广、业务系统专业性强、互联网络组成复杂度高,且三者间相互耦合,而针对电力系统的网络攻击呈现定制化、隐蔽化和高级化等特点,难以清晰描述基于零日漏洞的高级持续性网络攻击的机理和特征,不同电力系统智能终端、系统、网络在攻击下的表现不一,因此无法单一根据攻击特征进行识别和阻断。传统监测手段缺少对电力业务场景的安全建模,监测数据源仅涉及CPU内存等基础资源状态和基础网络流量,未面向电网业务流、专用协议和应用特征进行深度监控与分析,难以精确、深入地感知电力系统智能终端系统安全状态,需要探索终端安全精确感知与攻击阻断技术。同时,在电力设备广泛互联后,边缘侧安全防护能力不足,需突破混合电力业务可信边缘接入与多级安全隔离技术。

3电力系统智能终端信息安全防护技术研究思路

针对电力系统智能设备安全互联的需求,以解决电力系统智能终端“自身安全”和“攻击防御”问题为核心,本文提出了覆盖“芯片层、终端层、交互层”的3层安全防护研究脉络,构建电力系统智能终端安全防护技术研究模型,如图2所示。

具体来说,首先需解决“覆盖电路级、CPU内核及片上内嵌入式操作系统的芯片全通路安全防护机制及适应各类异构终端的普适性主动免疫问题”,从芯片层安全和终端层安全开展关键技术研究,以确保电力系统智能终端自身安全。在芯片层,需开展芯片电路级安全、专用CPU内核、片上内嵌入式操作系统安全等3方面技术研究,为电力系统智能终端计算环境安全提供满足安全性、实时性要求的电力专用芯片,为终端主动免疫能力构建提供基础。在终端层,需从终端计算环境安全、应用安全、通信安全角度,重点研究具有主动免疫能力的电力系统智能终端内嵌入式组件和控制单元技术,并研制具备主动免疫能力的电力嵌入式组件、控制单元和终端。芯片层研究和终端层研究的成果共同解决终端主动免疫问题;同时,终端层将为交互层提供终端安全监测数据,并向交互层终端边缘接入防护提供业务场景和接入需求。

在此基础上,为解决“攻击特征不确定、终端/业务/网络强耦合条件下,终端安全状态建模、精确感知及威胁阻断”的问题,需从交互层安全开展关键技术研究以确保外部攻击防御。具体来说,面向主动免疫终端的互联应用场景,研究提供网络监控防御和安全交互保障技术;从终端状态感知、攻击识别、威胁阻断等3个监控与防渗透必要环节,研究终端、业务、网络多维融合状态感知、关联电力业务逻辑的深度攻击识别、终端网络联动的威胁阻断技术,实现终端安全威胁精确感知与阻断,为电力系统智能终端提供网络攻击防渗透决策控制服务。同时,研究电力系统智能终端的统一边缘接入场景安全防护,为终端的边缘接入安全、数据安全和隔离保护提供技术支撑,为具有自免疫能力的电力系统智能终端的边缘接入提供安全传输通道。

4电力系统智能终端信息安全防护关键技术

下文将从芯片层、终端层、交互层等3个方面对电力系统智能终端安全防护需突破的关键技术展开阐述。

1)芯片层安全防护关键技术:芯片电路级可证明安全防护技术和内核故障自修复技术。

针对复杂环境、先进工艺条件以及新型攻击模型带来的一系列芯片安全问题,研究覆盖电路级、CPU内核以及嵌入式操作系统的具有完全自主知识产权的电力芯片安全技术[17]。满足电力系统终端对电力专用芯片的高安全、高可靠、高实时性要求。

首先需要进行芯片级安全防护理论研究,针对集成电路器件的信息泄露产生源问题[18],具体理论研究方法为:研究先进工艺下电流、光、热等物理信息的产生机理[19],掌握其内在物理特性和工艺间的关系;分析芯片电路元件的组合物理特性,以及多元并行数据在信息泄露上的相互影响;在芯片内部特征差异和外部噪声环境下,研究先进工艺下电力专用芯片物理信息泄露的精准建模方法,构建普适性物理信息泄露模型;研究可证明安全的泄露信息掩码、隐藏技术以及抵御高阶分析和模式类分析的防护技术,提升芯片安全设计理论与方法;研究层次化芯片安全防御体系架构。通过研究芯片运行电磁环境监测、运行状态监测、多源故障检测技术,实现芯片的环境监测和内部监测。研究CPU指令流加密和签名、平衡电路构建、数字真随机数电路等技术,实现芯片内部数据的存储加密、总线扰动、电路掩码。提出可证明安全的自主知识产权芯片电路级防护方法,满足电力专用芯片的高安全要求。

在理论研究基础上,需基于可证明安全的芯片电路级防护方法进行芯片电路级防护实现技术研究。首先,基于自主知识产权的CPU架构,研发带有高安全、高可靠特性的CPU内核,并对以上技术进行仿真验证,研究形成CPU内核故障自修复技术,满足电力专用芯片的高可靠性要求;然后,确定仿真验证可行性,并采用以上关键技术研制低功耗、高速特性的电力专用芯片,开发适用于电力应用的片上内嵌入式操作系统,满足电力专用芯片的高实时性要求。

最后,对研制的电力专用芯片和内嵌入式操作系统进行全套模拟测试,以确定满足后续电力智能终端的开发应用。通过芯片层安全研究方法确保电力专用芯片满足安全防护要求,实现功耗电磁隐藏、数据命令掩码、电路屏蔽,以抵御模板攻击、电磁注入攻击等新型信道攻击、故障攻击、侵入式攻击。具体研究框架如图3所示。

2)终端层安全防护关键技术:融合可信计算和业务安全的异构智能终端主动免疫技术。

针对电力智能终端异构、资源受限条件带来的终端易被恶意控制和破坏的风险,提出研究融合可信计算和业务安全的异构智能终端主动免疫技术。首先,根据电力多场景业务应用情况,分析各类电力系统智能终端的安全防护需求,提取异构智能终端的主动免疫需求特征;然后,根据异构终端的主动免疫需求特征,研究建立适应电力系统智能终端的普适性主动免疫安全架构。①在硬件安全架构技术研究方面,针对电力终端特性研究基于电力专用芯片的电力终端可信根[20],实现对电力终端操作系统、业务应用程序的可信量度,保证终端状态的可信[21-22];设计以可信根为基础、以嵌入式微控制单元(MCU)为应用的终端可信逻辑硬件架构,研究端口安全访问机制和接口驱动安全机制,实现终端的主动免疫能力。②在软件架构技术研究方面,针对电力终端在数据交互、访问机制、检查机制、审计机制方面存在的漏洞,研究数据安全保护机制[23],保证各个应用和各部分数据的独立安全;研究满足电力系统需求的安全访问控制机制,外层访问和软件平台之间的安全检查机制;研究适应外层、软件平台访问的安全访问审计机制。

在电力系统智能终端普适性主动免疫安全架构基础上,为实现终端计算环境安全、业务应用安全和对外通信安全,提升多种场景下异构电力系统智能终端的安全防护能力。需开展系统安全访问、数据安全保护、信任链构建、可信量度与可信管理、可信证明与可信证据收集、数据安全交互、核心功能保护、快速恢复及通信完整性保护等方面的关键技术研究,建立适应电力系统异构终端的普适性主动免疫体系。具体研究框架如图4所示。

3)交互层安全防护关键技术一:面向不确定攻击特征的终端威胁精确感知与阻断技术。

针对电力终端接入和互联过程中的攻击监测、异常处理与安全防护需求存在的问题,研究基于“异常监测—阻断响应—安全防护”的交互层安全技术。

首先,研究多级分布式监测与防渗透架构,构建监测布点机制和终端防渗透模型:①针对典型电力终端业务场景,分析不同场景的脆弱性和安全威胁,研究基于业务场景的终端网络渗透路径;②对终端系统中已有的安全防御措施进行建模;③综合防御模型与终端网络渗透路径,形成不同业务场景的监控与防渗透模型。

其次,针对网络渗透攻击特征的不确定性,需研究终端、业务、网络多维融合安全状态建模与感知方法,建立各维度安全状态基准,采用异常特征抽取技术获取各类攻击和异常特征的映射关系,反向推导可能发生的渗透攻击,实现异常识别。在终端安全状态感知方面,需分析多源异构嵌入式电力智能终端硬件资源、可信模块、配置文件、关键进程等运行状态特征,构建面向终端状态异常行为的分类和诊断模型,实现对多源异构终端的有效异常感知。在业务安全状态感知方面,开展基于协议深度分析的业务异常感知的研究。分析电力协议的格式规范、业务指令特征和操作逻辑,对协议进行深度解析并提取指令级特征[24];分析单一数据报文的合规性,识别畸形报文;分析组合数据报文,还原业务操作行为,实现对违规行为的异常感知。在网络安全状态感知方面,从通信路径、通信频率、流量大小、流量类型等多维角度分析电力终端流量特征[25],并融合归一化处理,以自学习的方式确定行为基线,实现流量异常识别。

在此基础上,针对电力系统遭受渗透攻击后的准确有效响应需求,结合各类电力系统业务场景,研究基于特征提取和模式识别的攻击关联分析方法,构建概率关联模型和因果关联模型,对攻击特征进行关联分析[26],作为攻击识别技术的支撑基础。对具有较显著特征的攻击行为,构建多模式快速匹配模型,实现攻击的快速匹配识别,对特征相对不很显著的复杂攻击行为,利用机器学习,实现攻击的有效检测。

最后需研究防渗透策略管理和隔离阻断技术,形成网络和终端设备的策略下发、执行和优化等综合管理方法;对于被入侵的高风险终端,产生终端隔离策略或网络阻断策略,对于受影响终端,生成风险规避策略。并需要研究策略优化、冲突检测、冲突消除算法,实现融合“终端隔离”与“网络阻断”的多层协同防御策略,最终基于攻击危害评估的隔离阻断技术实现攻击的抵御和消解。具体研究框架如图5所示。

4)交互层安全防护关键技术二:电力系统智能终端互联场景下终端边缘安全接入和混合业务隔离保护技术。

首先研究电力系统智能终端边缘接入体系架构和安全防护体系,为电力监控系统、智慧能源系统、能源计量系统的终端互联安全提供基础支撑。

在此基础上,针对电力系统智能终端互联、混合业务统一接入场景下,海量多样化终端的合法快速接入认证问题,需采用分布式授权接入控制、轻量级验签等方法,研究快速接入认证技术;在轻量级公钥、私钥研究的基础上,提出轻量级签名算法以及公钥对生成算法[27],通过软硬件结合方式构建轻量级的验签体系,支撑系统的实时验签处理。实现终端分布式授权和高速安全接入认证。同时,需针对不同边缘侧业务、环境、时间、跨度,实现不同安全需求的边缘侧认证授权技术,即在知识库、规则库构建的基础上,基于自学习方法构建完整的电力系统边缘计算认证因子体系[28],实现多种认证因子共存的“白名单”最小化授权认证。

针对边缘接入过程中的数据安全防护问题,需研究轻量级密钥更新和数据安全处理与质量保障技术,实现全实时数据安全防护。首先设计密钥管理、协商、更新机制,重点研究混合业务分级分类安全存储、高速接入场景动态协调存储方法,满足数据高速增量存储。在此基础上,研究高性能的安全多方计算方法,实现实时数据流的安全、高速处理和隐私保护,在计算能力和带宽约束条件下解决数据篡改、数据失真等安全问题,并在边缘计算能力和带宽约束条件下实现数据清洗、融合、治理,定量化提升数据质量。

最后针对多业务互联过程中的业务隔离困难的问题[29],需结合资源虚拟化调度和切片技术,研究多业务安全隔离技术,选择合适的切片粒度和生命周期,平衡切片的灵活性和复杂性,实现多业务共享资源的切片式安全隔离,支持混合业务可信敏捷接入与多级安全隔离。同时为了确保业务连续性不受影响,充分利用不同通道的优势,需采用通道切换的方法进行多模通道自动倒换,实现通道使用优化,提高业务接入和备份能力,确保业务状态不中断。具体研究框架如图6所示。

5电力系统智能终端信息安全防护能力测试验证技术

电力系统智能终端信息安全防护需要多方面的关键技术,目前国内外尚无适用于电力系统智能终端业务环境的安全性测评验证技术。本文尝试从安全防护技术集成优化、实验室测试验证、多业务综合试验验证等3个方面,对电力系统智能终端信息安全防护技术有效性进行分析和展望。

1)安全防护关键技术集成优化。电力系统智能终端安全防护涉及了芯片层、终端层、交互层3个方面,相关技术在应用过程中需兼容电力不同业务系统应用场景、防护要求及措施的差异。同时,需要兼顾与各业务系统在功能模型、性能指标、安全策略等方面的匹配性,考虑与已有防护策略的优化集成应用需求,以支撑芯片层—终端层—交互层安全防护技术的整体研发与应用。

2)安全性实验室测试验证。为满足电力系统智能终端信息安全防护技术有效性验证需求,需基于电力业务系统运行场景模拟,研究安全防护能力的实验室测试技术,构建终端安全性检验测试平台,实现安全功能符合性、穿透性测试。此外,需研究考虑不同攻击密度、攻击特征及目标定位的攻击用例,构建安全攻防验证平台,实现主动免疫电力系统智能终端及安全监测与防渗透系统安全功能的有效性测试。

3)安全性综合验证评估。综合考虑实际业务环境中的负荷特点、供电可靠性要求等因素,在安全防护技术应用到生产环境后,为对相关安全技术有效性以及业务影响性进行测评验证。需考虑通过红队攻击和专家组验证等方式,采用终端自身攻击、纵向通信攻击、主站下行攻击等方式,验证主动免疫电力终端、终端安全监测与防渗透系统、边缘计算安全接入设备的安全功能有效性,并评估对业务系统实时性、正确性、可靠性等方面的影响及对现有防护体系的提升能力。

智能制造研究分析第8篇

1数据智能分析师培养

就业前景分析方面,谷歌首席经济学家哈尔•瓦里安预计,未来即将出现一类新型的专业人才和职业岗位——数据科学家,当然数据智能分析师也会应运而生。现下时代是数据时代,甚至称之为大数据时代,企事业单位面临大量数据如互联网数据、医疗数据、能源数据、交通数据等,实际应用中普遍遇到分析能力弱、噪声数据多、缺少分析方法、分析软件能力差、模型可信度低等问题,其主要原因在于传统数据分析方法不能满足需要,而数据挖掘技术、机器学习技术、模式识别技术、知识发现等智能技术可以为数据智能分析方法与工具提供技术支撑。2014年4月24日,百度高级副总裁王劲在第4届“技术开放日”上正式宣布推出“大数据引擎”,数据智能概念由此产生。数据智能分析是指通过数据挖掘技术、机器学习、深度学习、模式识别与分析、知识发现等技术,对数据进行处理、分析和挖掘,提取隐藏在数据中有价值的信息和知识,从而寻求有效解决方案及决策支持预测。目前社会急需懂得智能技术的各层次数据智能分析人才,可以预计,熟练掌握智能技术的数据科学家、数据分析师、数据挖掘人员将有广阔的用武之地。培养手段探索方面:①以“点—线—面”结合的方式横向纵向设置课程群,面向数据智能分析,以案例为导向贯穿“线”上的各关节点课程,比如以数学基础课(线性代数、概率统计、数学分析)大类专业课(程序设计、数据结构、数据库技术)数据智能分析专业课(数据挖掘、机器学习、多维数据分析)为主线,理论与实践齐头并进;②立足培养“计算技术+智能信息+知识技术”的高级数据分析师,理论学习—随课实验—集中实践—科技活动—企业实习—毕业设计等教学环节协调配合,“资格认证—竞赛获奖—奖学资助”激励培养;③以大数据智能分析为契机,积极培养本科生的大数据计算思维和认知能力,使其掌握大数据智能分析方法、机器学习数据挖掘工具和开发环境。政策导向分析方面:建议中国计算机学会与中国商业联合会数据分析专业委员会等机构紧密协调合作,设立适应新时代社会与经济发展的“数据智能分析师”认证[6],当然将大数据智能分析纳入计算机水平考试的可选项也是当前的一种解决方案,提高智能科学与技术专业社会认可度,增强本专业学生的归属感,更好地培养各层次的数据智能分析人才。

2创新型智能技术人才培养

智能科学与技术的发展与计算机技术几乎同时起步,但其进展比计算机技术要慢许多,根本问题在于高级智能的载体——“人脑”是世界上最复杂的系统,人类对它的认识和了解仍然处于初级阶段。近年来通过智能技术解决实际应用问题有了长足进步,国内已相继有20多所高校面向市场变化和未来需求,自2004年以来陆续开办了智能科学与技术本科专业。尽管大多数智能技术的理论基础还不完备,但实际应用的强劲需求与问题解决能力超越了薄弱理论基础的约束。本专业课程的教学内容与课程实践都适合教师与学生以研究者的身份参与到“教”与“学”的活动之中。1)研究型教学。蓬勃发展中的智能技术需要教师启发式、创造式、批判式地“教”,学生也要创造式、批判式地“学”。教与学要能够从研究思维、问题探索、模型改进、算法优化、脑认知和自然智能指导的角度推进教学活动,进行创新性教学和研究型学习。教学实践活动中应强调学生半监督式学习与自监督学习为主导,鼓励引导深度学习,经典案例、前沿讲座、讨论探索贯穿课堂教学,课程考核注重创新科技实践、问题探索、课程内容探索、课程研究性专题报告、以课程为基础的作品开发等创新效果和教学效果。2)“研究型分组”培养。智能科学与技术专业开办时间不长,成熟教材不多,课程体系需要不断适应学生和社会的需求做出调整,又加上智能科学专业课程本身的发展探索与实际应用现在处于同步发展阶段,决定了专业老师大力推进“研究型班级教学”,在教学过程中实施“大班基础讲授”+“小班研究型讨论”+“小组探索型课题实施与报告”的教学体系,同时来自相关研究方向的研究生也作为助教协助专业老师对小班(组)课题讨论进行引导。3)科研训练提高学习积极性。大类培养模式下实施科研训练引导学习,大一、大二年级主要学习公共基础课程和大类专业基础课程,其中的数学基础课,如线性代数、高等数学、概率统计、离散数学等,由于缺乏实际应用案例支撑,很多学生会怀疑这些知识在将来本专业学习中的用处,课堂课后处于被动学习状态,个别学生还会由于认识滞后,产生厌学情绪甚至放弃基础知识学习,以致于专业分流后表现为学习能力严重不足。通过吸收本科生参加科学创新实践和科技活动,使他们发现数学知识能够用来解决实际问题,有利于提高本科生学习基础知识的积极性,变被动学习为主动学习。同时,教师也能从中发现部分优秀本科生的创新潜力和研究能力,激发他们科学研究的兴趣,引导他们把智能科学技术作为研究方向并致力于攻读相关方向硕士研究生、博士研究生,进一步强化其科学创新能力,势必会使其获得高水平创新性成果。大类培养模式下强化专业教育与实践,专业老师要积极主动引导学生,变被动地等待学生选专业转变为吸引优质学生,以大二上学期为主要时间点,引导大类专业学生对特色专业的兴趣,通过科学研究和学生科技活动吸引选拔学生进科研团队,同时实施科研成果进课堂、进教材、进学生活动。专业教师、班导师可宣讲专业特色和就业前景,指导本科生申请大学生科研训练计划、参加科技竞赛、开发智能技术特色作品。大类培养模式下实施科研训练计划,需要本科生积极主动地理解大类下各子专业的特点和特色,结合自己的兴趣爱好和实际情况,在大类培养结束时分流到各特色专业。因此,本科生参加科研实践和专业科技活动的时间点很重要,从大一结束后的暑假开始,一直延续到本科毕业,同时实施“泛毕业设计”(即大二选方向并实施课题基础储备,大三实施课题,大四结合专业实习完善毕业设计)[3],这样既充分利用了本科生大二大三充裕的课后时间,也缓解了大四本科生面临就业、考研、出国等问题的突出矛盾。

3智能系统开发人才培养

智能技术已成为当前技术革命创新的源泉,智能系统广泛应用于工业、农业、服务业等各领域,比如2014年11月2日开始处女航的皇家加勒比邮轮公司“海洋量子号”邮轮也因为大规模运用了高科技智能系统而号称“世界上第一艘智能邮轮”。智能系统是建立在“智能技术+计算技术”基础上,结合了控制技术、信息技术的软硬件系统。智能系统开发人才培养目标是社会急需的智能系统开发工程师,其从事的工作主要包括智能系统的设计、开发、维护、运营、服务及相关的技术指导。为了适应智能系统开发人才的培养,应该建设智能终端实验平台、计算智能实验平台、脑认知实验平台、高性能计算平台等人才培养基地与实训基地,推进实施智能终端软件开发技术、智能系统应用课程设计、智能系统与工程课程设计、智能游戏开发与设计、人机交互系统开发与设计等教学实践活动。

4复合型智能技术人才培养

智能科学与技术是一门综合学科,智能技术也广泛应用到智能交通、智慧城市建设、电子信息、信息安全、电子政务、电子商务、工业制造、教育、医疗、管理、农业现代化、国防现代化等众多领域,需要大量复合型智能技术人才。笔者认为,以下4条措施是智能科学与技术新兴专业培养复合型人才切实可行的培养方案:①充分发挥大类培养特色明显的人才培养优势,开放“全校特色专业选修课”,跨专业、跨学院科教团队,与大学生科技创新计划融合,重点培养学生的综合性、复合性、应用性;②引导并严格要求B学分课程学习,特别是设计规划实施好“科技创新”、“文体活动”、“技能认证”、“企业实习”、“暑期社会实践”等综合能力提高计划;③交叉融合办好本科生二专业,鼓励学有余力的本科生对知识的渴求,允许学生在本专业的基础上再辅修另一个专业,并提供配套措施,保证二专业学生能获得优质教育,发挥学科交叉融合优势,使本科生形成宽广深厚的知识结构,培养有特色的智能科学技术专业复合人才;④通过与企业横向合作,建立校企实训基地,紧跟企业和市场需求,与企业联合培养复合应用人才。

5结语