发布时间:2023-04-06 18:39:53
序言:写作是分享个人见解和探索未知领域的桥梁,我们为您精选了8篇的数据通信论文样本,期待这些样本能够为您提供丰富的参考和启发,请尽情阅读。

1.报文交换。所谓的报文交换,是指将用户的报文暂存在交换机的存储器当中,当所需要输出电路是空闲的时候,就将该报文发到所需要接收的交换机或者是终端,这种传输方式可以有效的提高断线和电路的利用率,更重要的是可以提高其工作效率。
2.分组交换。所谓的分组交换,指的是将用户发过来的报文的整体分成若干个定长的数据段,然后将这些分好的数据段进行存储,在网内进行传输。每一个数据段也就是一个分组,每一个分组都标识着接收地址和发送的地址。同时不同的用户的分组数据都采用的动态传输,也就是同一条路径可以有不同的用户在进行分组传送,因此,这种方式的传输效率较高。
二、数据通信的应用及发展前景
(一)移动数据通信在业务上的应用。1.移动数据通信的应用是利用移动通信的系统进行数据通信,它不仅可以作为固定的数据通信,还能够实现移动的图文传真、计算机联网、远距离传输等。由于移动数据的通信设备具有个性化的特点,因此数据传输的时候往往会由于一个网络端口会被人们多次使用,所以会经常出现拥堵的情况,由此便造成了多个连接终端不顺利进数据传输。但是移动数据通信就不会出现这种情况,我们只需要根据正常的程序进行,一个终端只负责一个用户,提高了数据传输的效率。除此之外,移动数据通信还能够实现电脑与电脑之间的远程操作和简单的数据传送,这样就利于人们在业务频繁的时候,可以随时随地的进行数据传输,从而达到省时高效的目的。由此可以发现,移动数据的通信可以使用户及时的收发消息。2.帧中继技术应用。所谓的帧中继应用,主要是指使用光纤作为主要的传输方式,由于帧中继由于具有出错率低的技术特点,从而受到了人们的广泛关注。目前为止,这种技术被作为主要的宽带数据接口,也是交换数据的一种手段。但是这种方式不适用语音或者是视频这类传输,其具有特定的服务特性。
(二)数据通信的发展前景。从目前的情景来看,数据的通信已经成为了现代人们生活的重要组成部分,无论是在人们的工作中还是学习中,都离不开数据的通信,只有通过大量的信息的传输和累积,才可以使我国的数据通信更加成功,如此才能走得更加长远。
三、结束语
非分组型终端分为可视图文终端、用户电报终端、PC机终端等;而分组型终端包括数字传真机、计算机、智能用户电报终端(TeLetex)、专用电话交换机(PABX)、用户分组装拆设备(PAD)、用户分组交换机、局域网(LAN)、可视图文接入设备(VAP)等。数据电路可分为终端设备(DCE)和传输信道,传输信道分为模拟信道和数字信道。
2数据通信的分类
1)有线数据通信。①数字数据网(DDN),主要由四部分组成,分别是用户环路、DDN节点、数字信道及网络控制管理中心。DDN是一种数字通信网络,它把数字通信技术、数据通信技术、光迁通信技术以及数字交叉连接技术有机的结合在一起。②分组交换网(PSPDN),又称为X.25网,采用CCITTX.25协议。PSPDN采用存储—转发的方式,将用户传来的报文分割成一定长度的数据段,并在各数据段上添加控制信息,构成一个能在网上传输的带有地址的分组组合群体。PSPDN的主要优点是为了达到多用户同时使用,可同时开放多条虚通路于一条电路上,并具有先进的误码检错功能和动态路由选择功能,但通信性能较差。③帧中继网,起源于X.25分组交换技术,主要包括存取设备、交换设备、公共帧中继服务网三部分。帧中继网它可在帧中继帧中将不同长度的用户数据组包封,并在网络传输前添加控制及寻址信息。2)无线数据通信。无线数据通信是以有线数据通信为基础,而采用无线电波传送数据的通信方式,也可称为移动数据通信,它是计算机网络与数据通信相结合的产物,可实现网络计算机之间或人与计算机终端之间的通信。无线数据通信也是依靠有线数据网将网路应用扩展至便携式用户。
3网络及其协议
1)计算机网络。计算机网络(ComputerNetwork),是指通过通信线路将多台具有独立功能、地理位置不同的计算机系统连接起来,并通过网络软件及通信协议实现信息传递和资源共享。按地理位置划分,计算机网络可分为局域网、城域网、广域网、网际网四种。局域网是在一个较小的局部的地理范围内,如一栋楼、一所学校等,它是目前使用最多的一种计算机网络。城域网覆盖范围较局域网大,一般在10-100公里范围内,通常是在一个城市辖区内;广域网一般覆盖范围是整个国家(100-1000公里之间),连接该国家内各个地区的网络。网际网一般指覆盖全球的Internet。2)网络协议。网络协议是指在计算机网络中进行数据交换所使用的语言,它分为很多类型,如OSPF、LDAP、HSRP、EIGRP、TCP/IP等,我们日常使用的协议一般是TCP/IP。它适用于各种大小不同的网络。TCP/IP协议具有开放体系结构的特点,易于用户管理。TCP/IP是相关协议的集合体,是一种标准网络协议(含因特网协议和传输控制协议),它提供一种可靠的数据流服务,在程序之间传送数据,IP协议(网络之间互连的协议)用于计算机网络互联与通信。TCP/I协议具有跨平台性,采用四层层级结构:网络接口层,利用实际网络传送数据,即接收和发送物理帧;网络层:负责基本的数据封包传送;传输层:负责节点间数据传送;应用层:负责应用程序间的沟通。目前,IP协议采用二进制,共计32位,如200.10.85.120可用来表示网络上某台计算机终端所使用的IP地址,它在网络上是独一无二的。
4结束语
1)微波中继通信方式
通信载体为微波,亦称微波接力通信,是采用中继(接力)方式在地球表面进行无线通信的方式。具有传输频带宽容量大、跨越空间能力强、传输信号稳定质量高等特点。模拟微波通信采用的调制技术一般为SSB/FM/FDM,数字微波通信采用的调制技术有,BPSK、QPSK及QAM。
2)移动通信
主要分为全球移动通讯系统(GSM)和码分多址传输技术(CDMA)。数字移动通信主要包括以下关键技术:调制技术、纠错编码技术和数字话音编码技术。
3)卫星通信方式
其实质也是一种微波通信,该系统的中继站是卫星,由其发射微波信号,并在各地面基站之间传输。主要特点是通信覆盖面积大、传输容量大、受地域限制少、可靠性高等。数字卫星通信多采用数字调制、频分多址技术。
2数据通信系统的构成数据终端(DTE)
分为非分组型终端(NPT)及分组型终端(PT)两类。非分组型终端分为可视图文终端、用户电报终端、PC机终端等;而分组型终端包括数字传真机、计算机、智能用户电报终端(TeLetex)、专用电话交换机(PABX)、用户分组装拆设备(PAD)、用户分组交换机、局域网(LAN)、可视图文接入设备(VAP)等。数据电路可分为终端设备(DCE)和传输信道,传输信道分为模拟信道和数字信道。
3数据通信的分类
1)有线数据通信
①数字数据网(DDN),主要由四部分组成,分别是用户环路、DDN节点、数字信道及网络控制管理中心。DDN是一种数字通信网络,它把数字通信技术、数据通信技术、光迁通信技术以及数字交叉连接技术有机的结合在一起。②分组交换网(PSPDN),又称为X.25网,采用CCITTX.25协议。PSPDN采用存储—转发的方式,将用户传来的报文分割成一定长度的数据段,并在各数据段上添加控制信息,构成一个能在网上传输的带有地址的分组组合群体。PSPDN的主要优点是为了达到多用户同时使用,可同时开放多条虚通路于一条电路上,并具有先进的误码检错功能和动态路由选择功能,但通信性能较差。③帧中继网,起源于X.25分组交换技术,主要包括存取设备、交换设备、公共帧中继服务网三部分。帧中继网它可在帧中继帧中将不同长度的用户数据组包封,并在网络传输前添加控制及寻址信息。
2)无线数据通信
无线数据通信是以有线数据通信为基础,而采用无线电波传送数据的通信方式,也可称为移动数据通信,它是计算机网络与数据通信相结合的产物,可实现网络计算机之间或人与计算机终端之间的通信。无线数据通信也是依靠有线数据网将网路应用扩展至便携式用户。
4网络及其协议
1)计算机网络
计算机网络(ComputerNetwork),是指通过通信线路将多台具有独立功能、地理位置不同的计算机系统连接起来,并通过网络软件及通信协议实现信息传递和资源共享。按地理位置划分,计算机网络可分为局域网、城域网、广域网、网际网四种。局域网是在一个较小的局部的地理范围内,如一栋楼、一所学校等,它是目前使用最多的一种计算机网络。城域网覆盖范围较局域网大,一般在10-100公里范围内,通常是在一个城市辖区内;广域网一般覆盖范围是整个国家(100-1000公里之间),连接该国家内各个地区的网络。网际网一般指覆盖全球的Internet。
2)网络协议
关键词:单片机电话主叫信息识别FSK数据通信
电话主叫识别信息发送及接收(俗称来电显示),简称CID(CallingIdentifyDelivery),是电信局向被叫电话用户提供的一种服务项目,是指在被叫用户终端设备上显示主叫电话号码、主叫用户姓名、呼叫日期和时间等主叫识别信息并进行存储,以供用户查阅的服务项目。被叫用户根据显示的主叫识别信息而决定是否接听电话,可以避开一些不愿接听或不友好的电话。利用这个功能可以进行FSK信息解码的电话网数据通信,应用于实际生活中。
1电话主叫识别原理和传送协议
实现电话主叫信息识别业务的基本方法是,发端程序交换机将主叫电话号码等信息通过局间指令系统传磅给终端交换机,终端交换机再将主叫识别信息以移频键控FSK(Frequency-ShiftKeying)或双音多频DTMF(DualToneMulti-Frequency)方式,在第一次振铃或第二次振铃间隔期前传送给被叫用户终端设备。我国的通信行业标准明确规定,统一采用FSK方式提供主叫电话来显示服务。在一次呼叫中,若被叫用户申请了CID业务,则电信局的终端交换机就会向该被叫用户传送主叫识别信息数据。传送流程与时序如图1所示。
其中A、B、C、D、E为数据传送时的状态持续时间,各段时间值如表1所列。在数据传送前或传送过程中,如果用户摘机,则传送停止,但呼叫处理正常进行。
表1CID信号传送各段时间值
符号时间值说明
tA1s第一次铃流信号
tB0.5s<tB<1.5s第一次振铃结束与数据传送开始之间的时间间隔
tC≤2.9s传送数据的时间,包括信道占用信号和标志信号
tD≥200ms数据传送结束与第二次振铃开始的时间间隔
tE1s第二次铃流信号
tB+C+D≤3.6s各时段可根据具体情况确定
2主叫识别信息数据格式
FSK主叫识别信息数据的传输格式有两种:单数据消息格式SDMF(SingleDataMessageFormat)和复合数据消息格式MDMF(MultipleDataMessageFormat)。前者的结构简单,可容纳的信息内容较少,如主叫号码、日期和时间;后者的结构比较复杂,可容纳的信息长度较长,除单数据格式内容以外还可以主叫用户的姓名等。本文主要介绍FSK主叫信息数据格式的接收。
单数据消息格式由消息头和消息体组合,消息头由消息类型和消息长度组成,它们均为8位字。消息类型的值来识别消息的特征;消息长度指明后面所跟消息字的长度。消息体包括交换机需传给终端用户的消息。消息体可容纳1~255个8位的消息字。每个字用8位带校验位的7位ASCII编码字符集表示。
一个完事的消息帧由信道占用信号、标志信号、数据信息和校验字组成。信道占用信号和标志信号用来提示电话终端准备接收数据;校验字用来作差错检查,如图2所示。
①信道占用信号。这是发送主叫信息时要首先发出的头标志,由一组300个连续的“0”和“1”交替地组成。其第一个位为“0”,最后一个位为“1”。在通话状态下,此信号不发送。
②标志信号。在挂机状态下,程控交换机向用户发送主叫信息时要先发送的第二个标志信号,由180个标志位(逻辑“1”)组成。在通话状态下,此信号不发送。
③标志位。程控交换机根据线路使用情况随机插入的标志位,由0~10个逻辑“1”组成。
④数据字。主叫信息,每个数据字之前先行一次“0”作起始位,在最后加一位“1”作结束位,每个数字的最低位先发送。这样,实际每个字为10位,即1PXXXXXXX0,其中P为奇偶校验位。
电话主叫信息数据传送时,信道占用信号首先发送,后接标志信号,最后连续发送数据字。根据数据传送情况,间隔地插入一些标志位。一般标志位会加在如下字的传送之间:
a.消息类型字与消息长度之间;
b.消息长度字与第一个参考数字或消息字之间;
c.参数类型字与相应的参数长度字之间;
d.参考长度字与第一个参考字之间;
e.最后一个参数字与下一个参数类型字之间;
f.最后一个参考字或消息字与校验字之间。
单数据消息格式数据传送按消息类型(04H)、消息长度、消息字、月、日、时、分、主叫号码(或“O”或“P”)的顺序排列组成消息进行传送。所有的消息字和参数字都有奇数偶校验位,采用奇偶校验的方式传送。
3电话FSK信息通信电路设计
本文以FSK信息解调器SM8220P芯片与单片机及外电路接口为例,介绍FSK信息的通信接收方法。SM8220P解调器是日本NPC公司生产的双列直插、低功耗CMOS集成电路FSK解调芯片,其解调器的引脚功能如表2所列。
表2SM8220P引脚功能
符号引脚功能
TIP-RING1,2电话信号输入端。信号输入必须隔直流
AGND3模拟地,要通过一个电容接地
RDIN4振铃检测输入。要把振铃信号经衰减后连接到此引脚
RDRC5振铃检测RC延时电路,低电平有效
RDET6振铃检测输出,内部接施密特触发电路。当为低电平时,表明检测到振铃信号输入;不用时应接地
PWDN7掉电控制,平时应保持为低电平。若为高电平,进入掉电工作模式,COSCOUT、CDET和DOUT自动被设置成高电平,AGND、FOUT被设置成高阻抗状态
GND8器件地
OSCIN/CLKIN9振荡放大器输入,外部振荡放入器信号经此引脚输入
OSCOUT10振荡放大器输出,使用外部振荡信号时必须开路
CDET11载波检测输出端,低电平有效。为低电平时,表明此时有FSK载波信号输入
NC12空脚
DOUT13数据输出,平时为高电平。当CDET=0时,表明此时电话经上有一个有效的FSK信号输入,经解调后由该脚输出
DMIN14解调器输入端
FOUT15FSK带通滤波器输出端,通过一个电容耦合连接到DMIN
VDD16电源正极(3~5.5V)
SM8220P遵循Bell202和ITU-TV.23协议标准,以连续二进制脉冲频移键控信号的方式传输,传输速率为1200bps。支持FSK号码显示和姓名显示等多种功能;芯片内部包含电源掉电检测电路、振铃检测电路和载波检测电路;信号输入检测灵敏度高,电源工作电压较宽(3~5.5V),是进行电话FSK信息解码通信的较好的集成芯片。
为实现电话FSK信息的接收,采用P87LPC764单片机控制SM8220P电路,以完成电话FSK信息解码通信的工作。电话FK信息通信具体电路如图3所示。
从图3中可知,对于从电话线上传输来的FSK信号,信号传送在第一次振铃和第二次振铃之间。振铃信号经过整流、分压,加到TIL113光电耦合器件的发射管上,使发射管有电流通过而发光,照射到光敏三极管的基极,臻使光敏三极管饱和导通。在R6上得到大于1V的脉冲信号,输入到单片机外部中断0,唤醒单片机准备接收。0.5s后FSK信号经过C3、C4、R1、C2的隔直和衰减,输入到FSK接收器SM8220P的差分输入端TIP和RING脚,将FSK信号读取解调后从DOUT脚输出ASCII码的串行序列,由P87LPC764单片机接收处理,提取出相应的电话FSK信息,发到多功能LED显示模块MAX7219驱动数码显示和24C64保存。
4FSK信息接收通信软件设计
单片机对SM8220P输出的ASCII码串行序列的识别过程,由接收和数据整合两部分组成。由于FSK信号波特率为1200bps,每发1位的时间是833us,因此,可以设定定时器每833us接收1位,每10位提取出1个数字。如此反复循环,直到接收完全FSK信息。当有电话来时,在第一声振铃后,单片机开始准备检测接收信号,SM8220P开始接收300个由0、1组成的频率为1200Hz的信道占用信号和180个“1”标志信号,紧接着接收主叫号码和时间。每收到1个数字,SM8220P都把它变换成10位(1PXXXXXXXX0)的串行序列,由13脚输出传送给P87LPC764单片机,P87LPC764经过精确的定时编程将其检测整合出相应的FSK号码、时间等数据,完成FSK信息解码、接收通信、接收到的电话号码可以保存在24C64串行E2PROM中,也可以输出到LCD上显示。SM8220P的11脚用来提示电话线上是否有新的FSK信息的输入。若有新的FSK信息输入,此引脚将产生低电平。单片机接收FSK主叫信息可以采用定时中断方式,也可以采用延时查询的办法进行。电话FSK信息接收通信程序流程如图4所示。
1.1结合实际应用
数据通信的发展迅猛,在移动通信中从第一代模拟窝蜂移动通信系统产生至今,新技术不断涌现。我们经历了2G、3G时代,现在已经是4G时代了,而GSM技术已过时。这些都是学生身边的例子。那么就可以通过实际例子让学生了解具体通信专业的研究内容,知道所学的基础理论有什么用,让学生有目的性的来学习这门专业课。下面就结合实际应用的教学方式做具体介绍。例如在讲解数据通信中的差错控制原理时,可以先列举出一些实际例子,如在网上汇款时除了要输入密码还需要输入一个动态码,或银行汇款时除了要写汇款金额外要写中文字样的总款额,这里的动态码和中文字样的款额都是多余的内容,那么这些多余的内容起到什么了作用?它可以保证用户的安全和确保信息的可靠性。在通信中的发送端我们要传递一些有用的信息,为了确保在接受端能正确接收这些信息,我们也需要增加一些多余的信息来保证有用信息的可靠。这些多余的信息在通信中称为监督码。这就引出了差错控制的概念。那么究竟信息码后要加几位监督码才能保证接收端能收到正确的信息呢?这里以“打篮球”为例,收发双方约定好,用“1”表示球进了,用“0”表示球没进。当接受端接收到一个“1”时认为球进了,接受端接收到一个“0”时认为球没进。假设传输过程中出现了错码,发送端发送一个“0”时,接收端接收的是“1”,此时接收端是无法知道接收的信息是错的。我们加一些监督码来观察一下是否可以发现错码,在原来“1”和“0”后分别多加一位监督码“1”和“0”,此时收发双方约定用“11”表示球进了,用“00”表示球没进。通常在传输过程中要么没有错码要么错一位码,假设传输过程中出现了错码,发送端发送“11”时,接收端接收的是“10”,此时接收端知道产生了错吗,但究竟发送的是“11”还是“00”呢,不知道。这时我们再多加一位监督码来验证一下可以得出结论,当没有监督码时检测不出错误,当加一位监督码时可以检测到错误但不能纠正错误,当加两位监督码时可以检测到错误并能纠正错误。这就引出了差错控制的原理。我们发现监督码加的越多纠检错能力越强,那是不是越多越好的?从数据通信的性能指标出发,监督码越多传输效率越低,在回到网上汇款那个例子来看,如果动态码越多花费的时间也就越多,相当于在信道中传输的多余信息多,那么必然影响传输效率。那么究竟监督码加几位号呢?之后便可以给学生引入一些概念了,如汉明码、循环码和线性分组码。这些例子形象具体便于学生理解,其中在每讲完一个知识点后提出新的问题让学生思考,在与学习探讨的过程中引出新的解决方案,导出方法和原理。运用学生身边例子可以深入浅出的加深学生对知识点的理解,对于复杂问题要引导学生自主思考,从简单现象入手总结一般性,以提高学生思维能力。
1.2更新教学手段
教学手段改革是提高教学质量的重要方式。在教学手段上采用传统手段和现代多媒体技术相结合。传统教学手段是采用黑板和粉笔,这用方式在“数据通信原理”的教学中有利有弊。由于这门课涉及的公式推导很多,如果单纯的在黑板上写公式这样既效率低,教学效果也不好。如果简单的把教学内容制成课件,这样内容的信息量虽然大,但学生在理解上有困难。因此不能片面强调单一教学手段。对于复杂公式、各种波形图、频谱图则使用多媒体,这样教学内容既生动又直观,对于难理解的地方在板书作出强调,这样的教学手段事半功倍,提高了教学效果。
2.实验教学改革
课堂教学改革是课程改革系统工程中的一个重要组成部分,其具体目标是实现学生学习方式的转变,即促使学生自主、合作、探索的学习方法。“数据通信原理”是一门理论与实践结合性较强的工具式课程。课堂上的内容是可以在学生操作的过程中,通过思索能够获得的。理论结合实际应用是学好本门课的有效手段,这也就决定了实验课重要性。传统的实验教学方式是“模仿式”教学,即老师对所做实验进行原理分析,给学生做具体演示,然后学生进行模仿,当实验结果达到规定的数据要求时认为实验成功。这种传统教学方法的教学不佳,下面列举几种改革方法。
2.1“创新法”实验教学模式
“创新法”是事先给学生做出一个实验,演示具体的波形,在此基础上提出一些改良方案,让学生“创新”。最后让学生演示所得结果,进行讨论。这种方法是把大部分时间交给学生,让学生通过所学知识进行拓展,加深对课程内容的理解,进而提到学习自主学习和创新能力。
2.2“开放式”实验教学模式
在规定学时之外开放一周实验室,开放时间段是每天晚上19:00—21:00,事先对学生进行分组,每组3个人,每组发放一本实验指导书,老师给出10个实验题目,每组选择其中的三个题目去完成。为了提高学生的学习热情,相应的给出一些“优惠政策”,如具体完成时间自己掌握,可以天天来也可以不用天天来。对最先提出设计方案并能完成实验的前5组学生进行答辩,如实验结果达到要求的话,平时成绩满分。对实验完成质量高并有创新点的学生,期末卷面成绩上会给予加分。结合我院情况,往往实验课积极思考并能提前完成实验规定任务的学生期末的考试成绩也是名列前茅的。
2.3利用Matlab仿真
Matlab是这门课的先修课程,学生对这个软件比较熟悉,所以可以利用Matlab让学生仿真对数据通信课程所涉及内容。进行仿真具有形式生动、形象直观、启发性强的优点。它既能增强学生更好的学习这门课,又能弥补实验场地、仪器设备和经费缺乏的不足。具体的方法是提前把要进行的实验任务布置给学生,让学生自行仿真,在实验课时检查学生的仿真结果。对此实验的基础上对学生提出新的问题和任务,培养学生的自主学习能力和创新精神。
3.结语
数据高速传输,需有较大的总线传输容量,且还必须保证外界噪声不会影响到该系统。在高速数据采集系统中应用光纤通信网络,不仅可满足高宽带的需要,且与光纤信号均不会被外界噪声影响的特点相符合,最终可完成数据采集及传输。光纤通信网络在高速数据采集系统中的应用优势主要包括:(1)光波传输容量较大、频率较高。(2)具有良好保密性,不会受到电磁干扰。(3)信号不轻易衰减,具有较长的中继距离。(4)低廉、丰富的光纤材料来源,能够节省众多有色金属,且光纤材料重量轻、直径小,并具有良好地可挠性。随着现代通信网络的扩充、建设及提速,对光纤材料的需求也随之不断增长[3]。
2在高速数据采集系统中的应用
2.1高速采集模块
将Atmega168芯片应用于系统主控制器中,时钟时序由CPLD产生,实现对高速数据的控制及采集,数据采集模块具体方案如图1所示。高速数据采集系统运行原理为:通过传感器将模拟量信号中携带的物理量信息进行电压量的转化,再通过ADC转换模块以数字电压量代替模拟电压量,进而实施数据的采集、存储、传输及处理。由CPLD和AVR共同控制完成高速数据采集系统,并对所采集到的模拟信号实施模数转换后,在FIFO中缓存结果,再在Flash陈列中进行转存与保存。整个系统工作过程中,FIFO既具有缓存作用,还可使A/D对相关数据位数进行转换的匹配问题得到全面解决,有效调整了与Flash存储器中所包含的数据线位数。
2.2控制程序设计
在高速数据采集系统中,编程采集功能的实现选用两条通道实施时钟分析,若控制信号属于低电平状态,触发采集,8路数据通道存储采集到的数据,EOC电平逐渐下降[5]。在数据采集过程中,所有通道均具有相同的工作原理,且最终都在存储区中存入所采集到的数据。以此为基础,在CPLD中载入相关程序,系统性调试电路,同时实施8通道的数据转换及控制,所产生出的波形如图2所示。由此可见,1、3、4、5四路将8个连续脉冲分别产生出来,且具有准确的时序位置,即控制器可同时对8路信号进行采集与控制,不会发生时序或逻辑方面的错误[6]。因此,光纤通信网络应用于高速数据采集系统中的采集程序符合设计要求,依照所采集的脉冲宽度,能够将系统采集速度最高值为10Mbit·s-1计算出来。采用电光调制将采集到的数字信号进行成光信号的转换,并于光纤通信网络中实施加载,再采用光纤通信网络将所采集的数据传输至高速数据主控制系统中。
2.3外接存储器设计
光纤通信网络在通过光的形式与模块接入后,其数据速率比FPGA数据处理能力高,为了能够实现准确、实时地传输信号,故设计外接存储体是必要的。多累存储器在市场中有多种,其中主要包括DDRSDRAM、SDRAM、VCM、DRDRAM等。根据光纤通信具有高速率、大数据量等特征,再与总体硬件设计相结合,该系统选用DDRSDRAM。DDRSDRAM通过双倍速率结构增加对所采集数据进行高速读取的能力,此双倍速率结构中的所有时钟周期均会实施读写操作,从而达到双倍数据读写速度的效果。此外,控制命令、数据及地址被寄存在不同的时钟跳沿,所以DDRSDRAM必须精准的对时钟进行判断。为与该要求相满足,时钟信号于DDRSDRAM中通过双端差动实施数据传输,即CK#与CK.在CK变高、CK#变低的情况下,会认定CK为上跳沿;而若CK变低、CK#变高的情况下,会有时钟CK下跳沿的认识。时钟CK上跳沿对控制命令与地址予以寄存,可将所采集的数据进行高、低划分,并分别存储在时钟上下跳沿。DDRSDRAM在高速数据采集系统中的工作原理,如图3所示。与系统中数据存储容量要求与处理速度相结合,选用现阶段技术较成熟的HY5DU(L)T芯片。该芯片拥有32MB的容量,16位的数据总线宽度,芯片在最佳状态下的数据吞吐率最大值为2×16×166×106=5.312Gbit·s-1。由此可见,DDRSDRAM芯片并不能解决光纤信号网络速率在10Gbit·s-1时所存在的数据存储问题[9]。此外,因系统设计难以满足DDRSDRAM芯片速率最高值,故为了确保外部存储器余量充足,可通过4片芯片并联模式有效提升数据吞吐力,使其达到21.248Gbit·s-1。
3系统测试
在对基于光纤通信网络的高速数据采集系统进行性能测试时,需通过对已知信号进行采集,并将信号存储后,对比已知信号,最终完成测试。具体测试步骤为:通过光通信协议仪将特殊信号发送出去,达到9.953Gbit·s-1的信号速率,15520Byte的帧长,为便于分析信号,需对信号帧同步码设置成“F6F6F6282828”的序列,将0设置在帧头剩余部位,并将5设置在帧内剩余部位,由此避免对信号实施直接扰码与传输。在对光信号接收后,系统应该实施光电降速与转换处理,由系统中的FPGA对数据及时钟实施接收,对其相应处理后转入外部存储器实施缓存[10]。数据存满外部存储器后,可暂停采集数据,根据顺序对外部存储器数据实施重新读取,在计算机系统中送入千兆以太网接口实施统计对比分析。试验结果得出数据帧同步码,即“F6F6F6282828”,这些同步码后有若干个0,所有净荷均为常数5。试验结果显示,发送特定数据和接收数据相同。此外,为对系统误码率进行测试,将固定数据转换为伪随机码以做信号净荷,结果显示误码率在10~12以下。
4结束语
1.1信息化薄弱
随着信息化时代的到来,大数据的分析已经深入了各行各业,作为医疗的前沿,医院在信息化建设方面相对于其他行业相对薄弱。医院信息化薄弱问题一方面来自管理层对医院信息化建设的不重视问题;另一方面,医院信息化建设需要巨大的财力、物力和人力,医院将精力投入在医疗设备的改进和医疗水平的提高方面,在信息化建设上就难以投入过多的精力。
1.2信息化统计内容单一
在大数据时代,医院信息统计工作内容越来越丰富,然而一些医院并没有意识到信息统计数据的重要性,信息统计内容还只局限于对病人的病例进行统计。由于统计内容的单一,难以形成有效的分析数据,对于医院的管理和医疗水平的提高不能发挥出统计数据实际的价值。
1.3信息化统计专业性差
信息化在医院管理中的应用缺乏统计的专业性,目前,医院所采用的信息化系统主要包括HIS医院管理系统和CIS临床信息系统,这两套系统主要功能是降低劳动化强度辅助医院进行人和物的管理,而对于统计数据适用性并不强。所以医院信息化急需具有专业性的统计系统,充分利用数据的价值,帮助医院进行管理和医疗能力的提高。
2发展对策
2.1提高统计信息质量
在大数据时代,大量的信息集中在医院的信息科,如何快速将这些信息进行分类和提取是信息科所要面临的重要课题。信息的准确性是信息统计工作必须严格管控的内容,在现代化医疗体系建设中,把握信息的质量的关键在于建立信息内容评价标准和信息应用规范,信息数据的应用具有3个主要特征,一是准确性,二是适用性,三是及时性。统计信息的评价标准和应用规范主要围绕信息数据这3个主要特征进行确立。
(1)信息的准确性
信息的准确性对于来自方方面面的信息真伪进行判断,只有准确的信息才能够成为有效信息,在医院中如果误用了错误信息数据则会造成严重的问题。提高信息的准确性首先要明确信息的来源,其次要对信息的真伪进行辨别,最后对信息的价值进行评价。
(2)信息的适用性
在医院的信息管理中,如何从大量的信息内容中获取对信息应用目标有用的数据是信息管理的内容之一。信息的适用性选择需要建立统一的标准,避免“张冠李戴”造成信息错用的问题。信息的适用性原则主要从医院自身的信息采集为标准,因为不同的医院在信息产生上都不相同,只有利用自身的信息才能确保信息的适用性。
(3)信息的及时性
信息具有时效性,相同的事情在不同的阶段所产生的信息不一定完全相同,因此,在信息采集和统计时,必须要以最新数据为价值参考,加快信息刷新的频率,降低失效信息勿误的可能性。信息统计的及时性主要表现在医院建立信息及时交流的基础上,只有增强科室之间、部门之间、人员之间的信息沟通机制才能保证信息及时被利用。
2.2科学化管理
利用大量的数据统计促进医院科学化管理是医院信息统计工作的核心内容。医院信息统计科学化管理主要实现以下几方面工作目标:
(1)信息统计的评测
信息统计的评测功能可以对医院的人员、设备、耗材等进行统计,还可以对近段时间的医患病因进行统计,通过对医院各项数据的统计与近期医患病因的统计可以分析出在某段时间医院需要加强某方面医疗的能力。利用信息统计的评测功能还可以对医院某一专项的医疗水平进行评测,统计医疗过程中的不足,帮助医生及时调整医疗方案。
(2)信息统计的决策
我国医疗体制改革不断完善进行中,对于来自各个层面的数据进行统计分析,能够为医院的管理者提供准确的决策依据,帮助决策者正确判断医院经营方向。并且通过对本院的统计信息可以快速找到医院系统中的薄弱环节,依靠准确的数据为管理者提供医院改革的参考。
(3)信息化统计的监督
医院医疗和服务的质量是医院水平的重要表现,医院信息统计可以对医院的各个科室、每一位医生及护士的工作能力和工作状态进行一个时期的统计,通过数据可以客观地、真实地反映出不同科室的医疗质量和个人的服务水平。信息化统计的监督功能是保障医患关系融洽的重要手段,通过建立奖惩制度提高医生和护士的工作认真性,而信息化的统计数据则是衡量和监督医生和护士工作积极性的重要参考。
3结语
心电图蜂窝大数据网络系统包括心电图中心服务器、报告诊断中心(可接收由全球各地医疗机构传来的心电信息)、多种检查设备(心电图机、运动平板、动态心电图等)和终端浏览器4个部分。心电图中心服务器由数据库、数据储存和数据转换系统组成。它运行的系统主要包括:预约检查申请模块系统、排队叫号系统、检查系统、心电图辅助分析系统、终端浏览系统、专业查询及统计系统。其中,预约检查申请模块与HIS紧密结合,可准确查询到患者的预约就诊信息;排队叫号系统帮助患者及时了解大约需要的就诊等待时间,以便安排检查行程。在心电图检查结束后,心电图机通过检查系统将心电图数据与HIS中的患者信息进行匹配,再发送到心电图服务器;服务器运行数字接收程序(MedExXDTJReceived),将心电图数据入库。而报告诊断中心通过FTP文件传送服务自动从服务器下载病历数据,在心电图辅助分析系统的协助下,完成心电图分析、报告编辑等,保存后自动将数据上传到服务器。医生工作站打开ECGWeb浏览、IE浏览等终端浏览系统,通过服务器上的临床心电图MedExECGWebSetup服务程序浏览心电图及报告[5-6]。
2网络系统技术方案
心电图蜂窝大数据网络系统能够将分散的心电数据进行集中储存、转化、管理、分析和统计,将完成史无前例的心电大数据管理,为全人类的心电学研究提供全面而丰富的病例资料。除此之外,它还可实现与各级医疗机构的HIS等信息系统的对接,实现心电数据的共享。该网络系统所涉及的相关技术包括以下几方面。
2.1心电设备网络化连接
系统支持将动态心电图、运动心电图、数字心电图机等心电检查设备连入网络,从而实现全部心电检查的网络化。利用数字化技术,将心电检查设备等所采集的心电信号数据转换成心电图,发送到心电图中心服务器,实现全院医生的临床Web浏览。
2.2门诊与病房技术支持配备门诊预约、登记、心电检查网络系统,与医院HIS进行无缝连接。病房将可使用的不同型号心电设备之间进行数字连接,以打通与全球心电信息网络的联系。
2.2.1便携式心电检查仪该设备应用于床旁心电图检查,支持心电图的采集、存储、回放与传输。临床采集心电信号后,通过无线传输技术,将心电图快速传到心电图诊断中心,再由诊断中心出具报告。这样一来,就实现了边检查、边报告,简化了以往“检查后再集中报告”的传统流程,为患者节约了诊治时间[7]。
2.2.2心电诊断中心中心设有多功能心电分析系统,心电图医生根据专有用户名和密码登录系统,不仅可分析已有记录的波形和参数,还可随时调阅相关类型的心电图进行对比分析与统计等操作;所发出的心电图报告可保存、打印、审核及传送。目前,山西医科大学第二医院在网络心电监测诊断方面开展了卓有成效的工作:建立有完备的远程心电监测中心,构建了城市、社区和农村三级会诊系统服务模式,并正逐步健全山西省心电监测数据库,为解决省内医疗基础资料分布不均的问题找到了良策。我院自2012年3月起全面开展院内、院外、院前心电网络信息化管理,覆盖全院所有病房、门/急诊和体检中心,并发展院外站点51个,年心电图检查量达13万人次,且呈逐年增长之势。
2.2.3心电图中心服务器设立在全球各国家和地区或各级医院的服务器中心,接收特定范围内的心电数据并进行数据储存及转换,再传回服务器所在医院的心电图数据管理库,并提供终端计算机的FTP文件传送服务,与临床ECGWeb浏览、WebService等相应匹配。
2.3统计检索
该系统具备多种查询条件,可进行医生工作量、检查工作量、设备工作量等的管理统计。不仅如此,它还能方便地对心电图数据进行查询、归纳与统计分析,为科研创新和教学工作提供了有力保障。
3全球心电信息网络系统设计目标
当今在大数据时代背景下,传统的心电信息业务管理模式正悄然发生着改变。在传统模式下,人工干预过多,如检查收费、报告生成等流程皆需人力介入,易造成监管混乱;心电图与患者病史及临床诊断脱节,难以实现心电图数据共享;记录在热敏纸上的心电图容易丢失且保存不便,给心电图分析及科研资料的积累造成很大的困难[6]。随着全球心电信息网络系统的建立,上述问题均能引刃而解。它能为心电图原始资料的积累和共享搭建理想的平台,还能实现传统心电信息业务管理模式下无法完成的目标:(1)实现全球各国、各医院区域范围内的患者基础资料和心电检查资料的全面共享。(2)实现基层医院与中心医院以及各国专家之间的心电检查会诊功能,从而实现区域内心电图检查设备和高端人才资源的全面共享,乃至从整体上提高全球心电诊断质量和卫生服务水平。(3)搭建院前120急救心电图检查远程诊断平台,中心医院根据传回的心电图报告及早做好心脏病患者抢救的手术准备。(4)提供对疑难病例的会诊支持。(5)患者能够在区域范围内任何一家医疗机构获得同等质量的心电诊断服务,从而方便患者就近就诊且避免重复检查。此外,还能够方便患者上网查询自己的心电检查报告。(6)实现科研素材与业务学习资料的方便获取,解决了基层医院心电诊断医生工作、培训难以兼顾的难题;能够促进心电工作者在工作中学习,从而快速提高业务素质。(7)建立各国区域性的心电图像资料库和典型病例数据库,供教学和科研使用;建立各国区域范围内各家医院的心电诊断质量追踪数据库,以形成从源头上把关的心电诊断质控体系,从而全面提升各国心电诊断水平。(8)促进各国区域内医疗信息化建设,为今后构建基于人体健康档案的卫生信息服务平台奠定基础。
4结语