首页 优秀范文 建筑结构设计论文

建筑结构设计论文赏析八篇

时间:2023-04-01 10:11:28

建筑结构设计论文

建筑结构设计论文第1篇

薄膜材料质量很轻,每平方米大概700~1700克。轻质的结构材料大大减少了结构自重和材料运输的成本。轻质的结构和较大的结构变形能力还使张拉膜结构能够吸收震动,减轻地震对建筑的破坏作用,十分适合地震多发地区。薄膜材料具有一定的透光性能,常用膜材能透过大概4%~16%的光线。在白天建筑内部不需要人工照明,减少了建筑的能量消耗。在夜晚室内的灯光从膜面透出来,勾勒出张拉膜结构雕塑般的形体,成为夜晚的一道风景。薄膜材料具有很高的反射率,大量的阳光热辐射能被膜材反射回去,张拉膜结构极小的结构体量使其不会吸收大量的热量,减少了建筑的空调负担,十分适合炎热地区的气候。通过设置双层薄膜或多层薄膜结构,增加透明保温层能使张拉膜结构保持透光性的同时能大大提高结构的隔热系数,使其适应严寒的气候。张拉膜最大最吸引人的优势就是它那优美典雅的有机造型,总能抓住参观者的目光,赋予建筑鲜明的视觉特点,改变了公众传统的建筑印象和建筑审美,丰富了建筑师的创作手法。

张拉膜的结构概念

1.结构组成

张拉膜结构是一种新型的结构形式,它和以刚性材料为主要结构材料,受弯为主要受力方式的传统结构不同,它是以柔性的薄膜作为结构材料,通过支承张拉系统对薄膜施加预应力使其形成稳定的负曲面造型,获得结构刚度,能够覆盖大跨度空间的一种空间结构体系。如后附图1是张拉膜结构的两种最基本的结构形式马鞍形结构单元和锥形结构单元的示意图。它们都是由支承张拉系统和膜面组成。支承张拉系统包括桅杆、拉索、锚点、边索、脊索等,它们是对薄膜施加预应力的结构构件,并且是张拉膜结构重要的造型要素。在张拉膜结构中薄膜既承受建筑荷载是结构的一部分,同时又是建筑的维护结构。

2.膜面的几何要求

张拉膜结构和其他传统结构形式最大的区别在于它所使用的结构材料。传统的建筑结构采用的都是刚性材料,结构可以直接从材料中获得刚度。而张拉膜结构使用的结构材料是薄膜,它是一种柔性材料,只能受拉不能受压,它必须满足一定拓扑关系的几何造型,通过施加预应力来获得结构刚度,从而使结构具有承载能力。张拉膜结构需要满足的几何要求就是形成负高斯曲面。负高斯曲面上每个点的的两个主曲率半径分别位于曲面的两侧,如膜结构中的鞍面和锥形面,这类曲面也称为互反曲面(anticlasticsurface)。那么为什么张拉膜结构的曲面形式必须是负高斯曲面呢?假设空间有一个点要通过索来维持该点的平衡,由于索是柔性的不能受压,所以该点至少需要连接4根索,而且其中两根索需要向上弯,以承受节点受到的向下的力;另两根索向下弯,以承受节点受到的向上的力。如此类推要使一个柔性面上每个点都要保持平衡,那么这个面必然是的负高斯曲面。

当曲面曲率较小时为了保持膜面的平衡必然需要较大的预应力,曲率较大时可以减少膜面所需的预应力,因此张拉膜结构设计中一般都要尽量避免出现扁平区域,这会造成膜面应力分布不均,难以保持结构的稳定。负高斯曲面是维持张拉膜结构稳定的基本几何要素,在此基础上对曲面施加预应力使其产生足够的刚度,满足建筑结构的要求。张拉膜结构的曲面造型与结构受力是紧密联系在一起的,是膜面内部受力情况的直接表现。充分了解张拉膜结构的工作原理和机制对于建筑师进行张拉膜结构设计有十分重要的意义,可以帮助建筑师在进行造型设计时进行初步判断分析,避免设计出一些不合理的膜面造型甚至是根本不可能实现的形式。

关于张拉膜结构设计的论述

1.张拉膜结构空间设计的特殊性

张拉膜结构是一种以柔性薄膜材料作为主要结构材料,受拉为主要受力方式的结构形式和传统的结构形式有很大区别。结构特殊性决定决定了它内部空间设计的特殊性。

2.张拉膜结构的空间特点

(1)结构形式与建筑空间的高度一致性

结构与建筑空间的高度一致性是张拉膜结构最大的空间特点,它的其他空间特点都是由此而来。建筑的结构为内部空间提供了一个基本骨架。在传统结构形式的建筑中常常会对结构形成的原始空间进行进一步塑造和修饰,例如通过使用吊顶,掩盖一些较粗糙丑陋的结构构件,重新限定空间大小和形状,改变原有空间界面的肌理、质感和色彩,形成建筑师所需要的室内空间效果,这些建筑的结构和内部空间是不完全一致的有时甚至是相背离的。在张拉膜建筑中,结构形式和内部空间是高度一致的,结构本身就是内部空间的围合界面,它的形状、质感和色彩等决定了空间围合界面的形状、质感和色彩。在张拉膜建筑空间设计中,建筑师必须改变通常的先建筑后结构的空间设计方法,在进行空间设计构思时就要充分考虑结构的实现问题,把结构当作空间设计的手段和语言。

(2)透明的负双曲面空间

通常的建筑空间都是由直线元素构成的,即使是曲面的也都是各种正高斯曲面和零高斯曲面,例如圆柱面,半球面等,而张拉膜建筑的内部空间是一种负高斯曲面构成的空间。张拉膜建筑的内部空间更加自由流畅,空间之间的过渡平滑柔和,室内外的空间互相交融在一起。薄膜材料具有透明性,当我们站在张拉膜结构覆盖的空间里向上仰望,明亮的屋顶波浪般起伏,显得那么的轻巧和优美;阳光透过屋顶洒满室内,让人觉得室内和外面的天空发生了联系,屋顶宛若是漂浮在建筑上空的一朵云彩。张膜建筑的空间效果改变了人们对建筑空间的传统印象,对建筑产生了新的认识。

(3)新的空间限定元素

在张拉膜建筑中的结构本身就是内部空间的围合界面,张拉膜结构的各种结构构件:索、桅杆、膜面等就构成了空间的限定和表现元素。膜面是面元素,桅杆、拉索和膜面拼缝等是线元素而各种结构节点则形成了点元素。在这种情况下,结构构件不是简单的完成结构功能就可以了,还必须进行艺术化的处理承担起空间表现的任务。结构构件的艺术化处理包括对构件造型的美化,例如桅杆进行收分处理,设计膜面拼缝的图案,结构节点的造型设计等。此外更为重要的是,在张拉膜建筑中结构构件之间的视觉逻辑关系会影响到建筑的空间表达,就如同肋骨拱之间的视觉关系对于歌特教堂内部空间表达的作用一样。因此要处理好构件与构件之间的关系形成清晰的结构逻辑和有序的视觉层次。

3.张拉膜结构与建筑空间要求的契合

(1)张拉膜的结构空间形态

张拉膜结构的基本形态有鞍面、锥面、拱承面、波形面等。这些基本形态除了上述的张拉膜结构共同的空间特点之外还有着不同的空间形态特点。鞍形面张拉膜结构的高点和低点都在膜面周边,空间形态流畅开放,中央区域高度适中,空间利用率较高。锥形面高点在膜面中间,低点在周围,空间形态比较内聚。由于膜面中部升起较高,且空间越向上越狭小,相对来说其内部空间不容易被充分利用。拱承张拉膜膜面中央拱承部分较高,然后向两边逐渐降低,当多个拱承膜面组合在一起时所形成的内部空间比较容易被充分的利用。波形面张拉膜脊谷索交替排列,内部空间也高低起伏,一般来说脊索和谷索间隔距离不会太大,波形部分空间很难被利用。从上述的分析中我们发现,虽然张拉膜结构的结构厚度是所有结构形式中最小的,只有薄薄的一层膜的厚度,但是整个膜面结构的高度却比一般的结构来的大(这里的膜面结构高度指的是膜面结构的最低点至最高点的长度)。这是由于张拉膜结构的膜面曲率越大,获得同样刚度所需要的预应力越小,结构越稳定。为了减少膜面内部应力,增加结构的稳定性,张拉膜结构必须保持合适的膜面曲率。锥形张拉膜单元顶高度与平面跨度之比一般大于1:5,小于1:1,鞍形面要求中央平坦区域的曲面曲率大于3%。过大的结构高度会造成空间和材料的浪费,建筑供热制冷空调通风的过重荷载,建筑维护费用的上升。因此张拉膜建筑的结构设计要特别关注如何使结构的形态与建筑的空间要求相契合。建筑的空间除了满足使用功能对内部空间提出的要求外还要满足人们对建筑空间提出的精神需求,如空间气氛、意境、心理舒适度和其他美学要求。张拉膜结构所覆盖的空间与建筑物的使用空间和美学空间越接近,空间的使用效率越高,维护费用越低,这是降低建筑物全寿命周期费用,取得最大效益的重要途径。张拉膜结构可以通过以下方式达到结构形态与建筑空间要求的契合。

(2)充分利用结构空间

张拉膜结构的结构高度虽然比较大但只要我们合理的安排平面功能和结构剖面之间的关系,结构所占据的空间是可以被充分利用的。常用的办法是把建筑中需要较高空间的功能安排在膜结构的高点区域,而把只需要低矮空间的功能放在低点区域。张拉膜结构是空间的连续曲面,当建筑不同区域有不同的高度要求时它比通常的结构形式具有更大的灵活性和适应性。德国慕尼黑奥林匹克游泳馆通过飞杆内部支承和桅杆外部悬挂在中央比赛区域设置了两个高点结构。位于跳水池上方的高点稍高而位于游泳池上空的高点略低,整个屋面从两个高点向四周逐渐降低。建筑的结构形态与建筑的空间要求达到了吻合。(后附图3)意大利M&G研究试验室这座建筑采用连续拱承膜面作为建筑的外皮结构,把办公、实验室、车间、测试设备等功能包裹在其中。建筑内部各个功能单元,顺应拱形膜结构形态布置,在空间较高处安排较为高大的实验设备而较低处则作为休闲活动区域,充分利用了结构所覆盖的内部空间,提高了空间的使用效率。(后附图4)

(3)增加膜面内部支撑减少结构高度

有的建筑内部空间高度比较均匀,这就要求更加平缓的膜面形式,膜面的起伏不能太大,以减少空间的浪费。由于张拉膜结构的稳定性要求,曲面形式越平缓,结构的跨度也会越小。以损失整个结构的跨度来获得平缓的曲面形式显然不是一个可取的办法,那么该如何协调两者的矛盾呢?解决的方法是在原有膜面的内部增加支撑,使一个完整单一形式的膜面被分成若干部分的组合,这样就减少了每个区域的跨度,整个膜面就可以设计的更加平缓了。为了继续保持原有的无柱大空间,我们可以使用外部支承结构或者内部飞柱来提供膜面的内部支撑。1972年建成的德国雷根斯堡某游泳池由奥托设计。该游泳池主要用于休闲娱乐,只有少量的看台也没有跳水池,因此建筑的内部空间要求比较具有亲和力,高度不宜过高。奥托使用多高点的张拉膜结构作为游泳池的屋顶结构,18个高点通过钢索悬挂在外部的桅杆上。膜面内部多点高点支撑使整个膜面呈现出比较平缓的形态,满足了建筑的空间要求。(后附图5)此后奥托又在德国慕尼黑奥林匹克游泳馆临时看台屋顶的设计中采用了相似的结构。(后附图6)

(4)在膜面内部设置低点结构

膜面内部的支承点通常都是作为张拉膜的高点结构,如锥形和拱承式张拉膜。如果把它们膜面内部的高点颠倒过来作为低点,这样形成的膜曲面是向建筑内部凹进的,能大大压缩它所覆盖空间的大小,提高空间效率。美国佛罗里达州某度假设施需要建造一个膜结构屋顶来覆盖它的内庭院。膜结构屋顶由霍斯特伯杰设计。由于膜结构屋顶的跨度较大,如果采用常规的中央高点的锥形张拉膜结构,过大的结构高度会造成空间的巨大浪费,而且支撑高点所需要的结构也会增加许多建造费用。霍斯特伯格设计了两个巨大的倒锥形张拉膜结构作为屋顶结构。内凹的曲面使庭院空间控制在一个较为合适的大小,增加了空间使用效率。倒锥形的膜面周边固定在庭院周围建筑的屋顶上,低点由互相交叉的钢索直接锚固在庭院中间的地面上,省去了不必要的高点支撑构件,较少了造价。低点被设计成一个罩有透明有机玻璃的天窗,在雨天时,雨水从球罩与膜面之间的空隙流入室内,形成一处瀑布景观,为庭院增添了趣味。(后附图7)奥托在蒙特利尔博览会德国馆的设计中也在膜面内部设置了类似的低点结构。这些低点有效的起到了调整结构形态控制结构高度的作用。这些低点结构还使屋顶膜面自然的延伸到地面,建筑空间变得更加有机生动,对于表现膜结构特点,营造空间气氛起到了很好的作用。(后附图8)

4.拼逢在张拉膜结构空间表现中的作用

物体表面的图案和线条对于物体的识别有很大的影响。这些作用其实早就被建筑师发现并在建筑设计中加以利用。在歌特建筑中肋骨拱形成的韵律和图案是表现空间的主要工具,相互交错重复出现的肋骨拱突出了建筑空间高耸挺拔的效果,烘托出神秘、崇高、奔腾向上的宗教气氛。砖结构建筑中砖缝形成的图案和肌理;摩天楼玻璃幕墙的划分也都是建筑师设计建筑表面的线条元素表现建筑的手段。张拉膜结构的膜面是由膜材经过剪裁后拼接起来的,在拼缝的地方材料相对密实,透明度比较小,在光线下就会形成暗色的线条。张拉膜结构中的拼缝在结构上是无法避免的,但是它也为我们增强膜结构可识别性,形成合适的尺度比例,营造特殊的装饰效果提供了条件。

(1)可识别性线条可以强化曲面的造型,类锥形的膜面为了强调膜面的造型一般采用由高点向四周放射的拼缝。巴黎德方斯拱门的膜结构屋顶就是类锥形单元的组合。每个膜结构单元采用放射形的拼缝,使原本曲率较小的膜面造型变得清晰。放射性的图案使重复排列的膜结构单元变得十分生动,增加了许多耐看的细节(后附图9)。M&G实验室的膜结构屋顶在钢拱架方向上曲率较大而与拱架垂直的方向上曲率较小。垂直于拱架布置的拼缝突出了膜面的起伏变化,增强了可识别性。(后附图10)

(2)比例尺度膜面上的线条图案能使人获得正确的尺度感觉。美国想象公司的总部改造工程中采用了大面积起伏不大的张拉膜结构屋顶。屋顶平面接近于矩形,10个飞杆支撑的高点使膜面有轻微的起伏变化。膜面采用均匀大小的长方形拼缝,每个高点都支撑在拼缝交点处。长方形的拼缝图案使屋顶获得了尺度感,突出了高点布置的内在秩序和规律(后附图11)。巴黎的某城市改造工程中膜面拼缝没有进行恰当的设计,拼缝间隔大小不一,使人难以获得正确的尺度感,显得比较凌乱且缺少秩序(后附图12)。

(3)突出节点膜面的某些部位比如高点,低点,边缘张拉构件等是膜面应力汇聚转移的关键部位,这些部位自然的就会成为视觉的关注点,草率失当的节点处理会影响到整个结构的表现效果。对这些节点区域的强调除了通过构件造型的精心设计之外还可以通过节点部分膜面的拼缝图案和透明度变化来表现。2002年韩日世界杯足球赛在韩国仁川市所建造的门鹤体育场的屋顶是由桅杆支撑的规则悬挂式张拉膜屋顶,膜面在高点处使用星形的曲面切割和拼接实现了受力传递,解决了张拉膜带在高点处变窄的问题。双层膜面使星形的拼缝图案十分的清晰醒目,很好的起到了烘托高点结构的作用。(后附图13)在1998年建造的马兰西亚吉隆坡的国际游泳馆中,膜面主体采用平行拼缝,在每个悬挂点处拼缝进行了特别设计,呈花蕾状。花蕾形拼缝是由放射形拼缝和周边的双层聚酯条围边组成,使其具有比周边平行膜带更大的结构强度。在平行膜带的衬托下悬挂点处的拼缝图案强化了结构的构造特点和重要的结构意义,并为整个内部空间增添了几分诗情画意。(后附图14)

(4)装饰性在前面提到的例子中,张拉膜结构的拼缝在强调曲面造型,形成尺度感秩序感的同时都不同程度的起到了装饰膜面的效果。通过精心设计拼缝图案和膜面不同区域的透明度,能产生精巧的装饰图案。张拉膜结构的造型常会让人联想到自然界中的蜘蛛网,位于美国底特律河畔的Chene公园剧场的膜结构屋顶通过对拼缝方式的巧妙设计强化了这种相似性。剧场的覆盖结构是有三个弧形带状高点张拉膜结构。张拉膜的拼缝设计模仿蜘蛛网的形式,放射形的拼缝和折线形的等高线拼缝组合在一起,好像真是一张蜘蛛网覆盖在剧场上空,产生了很强烈的形式感和象征意义。(后附图15)在麦加先知清真寺庭院内的伞形遮阳结构是由德国建筑师BodoRash设计。在这些膜结构遮阳蓬上,膜面的拼缝被设计成为典雅的具有伊斯兰装饰风格的图案。拼缝呈放射形分布,从上往下拼缝线逐渐互相交错使图案变得更加生动。在靠近中心柱的附近,膜面张力汇聚在这里,需要额外的材料来增强膜面的强度。双层膜面加强膜面的强度,使膜面产生了不同的透明度增强的装饰效果。同样膜面上部连接点的加强构件不仅仅是结构元素也是装饰元素。在这个例子中张拉膜结构的拼缝起到了结构和装饰的双重作用。(后附图16)在德国Wasseralfingen的文艺复兴时期的城堡庭院内也有类似功能和结构的伞形活动天蓬。在这里膜面拼缝没有被设计成传统花纹而是抽象的叶脉形状,和膜结构轮廓形状十分协调,整个结构好像真是一片打开的树叶,给传统风格的庭院注入了新的气息(后附图17)。东京Kaetsu大学体育馆膜结构屋顶的膜面拼缝图案是十分简单的长条形,但设计者通过拼缝横竖方向的交错布置,改变了膜结构屋顶单调的局面也取得了很好的装饰效果(后附图18)。

建筑结构设计论文第2篇

超高层建筑高度要求与结构类型和抗震烈度密不可分,超高层结构设计要进行两种方法以上的抗震核算,并且进行抗震设防专项审查。世界超高层建筑有迪拜哈利法塔,高828m;广州塔,高600m、上海环球金融中心,高492m等。超高层建筑因其超高的高度而具有不同于普通建筑和高层建筑的特点。首先,对于超高层建筑,传统的砖、石等材料已难以适用,其结构类型也更具选择多样性,如钢筋混凝土结构、全钢结构和混合结构等。其次,超高层建筑的垂直交通与消防,由于其超高的高度,较依赖于垂直交通,同时也给消防增加了困难,这就要求超高层建筑的每一层都需设置灵敏的烟雾报警器、自动喷淋和适当的避难所。最后,超高层建筑通过对风作用效应、重力荷载作用效应、施工过程的影响、空间整体工作计算、结构整体内力与位移、抗震性能等设计计算分析,进而提高超高层的抗震性和安全性。

2超高层建筑结构抗侧刚度设计与控制

为了提高超高层建筑的抗震性,其足够的结构侧向刚度必不可少。足够的结构侧向刚度不仅可以保障建筑物的安全性、抗震性,还可在一定程度上有效抵抗建筑结构构件的不利受力情况及极限承载力下的安全稳定性。设计超高层建筑的结构抗震侧向刚度,应重点从其结构体系和刚度需求进行。

2.1结构设计。结构初步设计根据建筑高度和抗震烈度确定高度级别和防火级别。超高层结构设计首先满足规范要求的高宽比限值和平面凹凸尺寸比值限值,其次控制扭转不规则发生:在考虑偶然偏心影响的规定水平地震力作用下,扭转位移比不大于1.4;最大层间位移角不大于规范限值的0.4倍时,扭转位移比不大于1.6;混凝土结构扭转周期比不大于0.9,混合结构及复杂结构扭转周期比大于0.85。最后设计过程中严格控制偏心、楼板不连续、刚度突变、尺寸突变、承载力突变、刚度突变等现象。满足结构设计规范的同时,还应考虑建筑师的设计意图和功能需求,同时满足设备专业设计要求。结构平面的规整程度直接影响着抗震设计的强弱,尽量采用筒体结构,以使得承受倾覆弯矩的结构构件呈现为轴压状态,且其中的竖向构件应最大程度的安置在建筑结构的外侧。各竖向构件和连接构件的受力合理、传力明确,降低剪力滞后效应,杜绝抗震薄弱层产生。

2.2结构侧向刚度控制。超高层建筑的抗震性能设计主要与结构侧向刚度的最大层间位移角和最小剪力限制相关。对于层间位移角限值,其是衡量建筑抗震性的刚度指标之一,地震作用应使得建筑主体结构具有基本的弹性,保证结构的竖向和水平构件的开裂不会过大。同时,因超高层建筑的底部楼层、伸臂加强层等特殊区域的弯曲变形难以起主导作用,所以应采取剪切层间位移或有害层间位移对其变形进行详细的分析与判断。对于最小地震剪力,其最重要的两个影响因素是建筑结构的刚度和质量,当超高层建筑难以达到最小地震剪力要求时,设计人员应该结合具体情况适度的增加设计内力,提高其抗震能力和稳定性,然而,当不能满足最小地震剪力时,还需通过重新设计或调整建筑结构的具体布置或提高刚度来提高建筑物在地震作用下的安全性,而非单纯增高地震力的调整系数。

3超高层建筑的性能化抗震设计

超高层建筑的抗震性能设计,国内主要根据“三个水准,两个阶段”,即“小震不坏、中震可修、大震不倒”。超高层建筑来说,其建筑工程复杂、高度极高、面积大、成本高,一旦受到地震损害,其损失程度会更高,因此,必须充分考虑各方理论、实际情况和专家意见,兼顾经济、安全原则,定量化的展开超高层建筑的性能化抗震设计。同时,相关文件虽针对超高层建筑结构的性能化设计制定了较具体且系统的指导理念,涉及宏观与微观两个层面。但是,由于结构构件会受到损坏,且损坏与整体形变情况的分析计算都需进行专业的弹塑性静力或动力时程计算,而目前我国尚未形成相关的定量化的评价体系,因此,设计人员应在积极参考ATC-40和FEMA273/274等规范。此外,对于弯曲变形为主导的建筑结构,在大震作用后应尤其注重构件承载力的复核。

4超高层建筑多道设防抗震设计

除了上述注意事项外,针对超高层建筑进行抗震性设计时,还因注重设计多道的抗震防线。多道抗震防线是指一个由一些相对独立的自成抗侧力体系的部分共同组成的抗震结构系统,各部分相互协同、相互配合,一同工作。当遭遇地震时,若第一道防线的抗侧移构件受到损害,其后的第二道和第三道防线的抗侧力构件即会进行内力的重新调整和分布,以抵御余震,保护建筑物。目前,我国超高层建筑主要依靠内筒和外框的协同工作来达到提供抗侧刚度的目的,包含两种受力状态:首先,建筑的内外结构通过楼板和伸臂析架来协调作用,进而使得外部结构承受了较多的倾覆弯矩和较少的剪力,而内筒则承受了较大的剪力和一些倾覆弯矩,广州东塔就是此受力方式的典型;其次,以交叉网格筒或巨型支撑框架为代表的建筑外部结构,其十分强大,依靠楼板的面内刚度,外部结构即可同时承受较大的倾覆弯矩和剪力,如广州西塔。

5结语

建筑结构设计论文第3篇

关键词:建筑节能;外墙外保温;保温隔热

1保温隔热材料设计原理

保温隔热系统结构为基层处理-保温隔热层-抗裂保护层-饰面层。基层处理:根据不同建筑基体表面情况分别采用相应的处理方式,包括采用普通水泥砂浆找平、聚合物水泥灰浆拉毛或者不处理。以聚苯为主要原材料来生产保温隔热材料在世界各地均比较盛行,产品形式主要有聚苯板、聚苯复合材料、聚苯乙烯颗粒等,其中聚苯板目前使用比较多。然而,聚苯板不适合外形不规则的建筑部位保温,聚苯板之间粘结处易开裂,聚苯板与罩面砂浆亲和力差,综合成本较高,因而使用受到限制。将聚苯乙烯颗粒与胶粉料混合制成的不定型涂抹式保温隔热材料可以克服聚苯板的这些不足。胶粉聚苯颗粒保温隔热灰浆设计主要考虑原则如下:

(1)对聚苯乙烯泡沫颗粒的级配(粒径为2-5mm,容重为20-30kg/m3)、以及它和胶凝材料的配比的优化设计,使得此材料的密度、导热系数、蓄热系数、收缩率以及强度等各性能指标都得到了优化。

(2)添加了硅铝玻璃空心球体料(比表面积为400-1500m2/kg,球体粒径为5m-60m,氧化硅的含量在50%以上),它和聚苯乙烯泡沫颗粒都属于轻质多孔材料,起到了保温隔热作用;另外,“滚珠效应”改善了材料的和易性、整体性,一次施工达4cm以上,并且不需二次找平,显著提高了施工效率。

(3)由于外加剂的作用,引入了1%-5%的气泡,隔断了热传输通道,既达到了保温隔热的效果,也起到了保水的效果,提高了水泥水化程度,增强了保温层的强度。

(4)主要原料是废旧聚苯乙烯泡沫,既利用再生资源,又减少了白色污染,所以此灰浆材料既是很好的环保产品,也很大程度的节约了资源。

(5)采用干粉料预混合干拌技术与聚苯泡沫颗粒分装工艺,现场只需按比例加水搅拌即可施工,解决了传统工艺中生产搅拌期长、运输成本高、存放周期短、现场配料计量不准确、施工不方便等技术经济问题。

2抗裂砂浆设计原理

随着国家墙体材料的革新和节能建筑推广应用工作的深入,传统砂浆所暴露出的许多缺陷,如因墙面空鼓、开裂、脱落等而引起墙体渗漏、透风、剥落等问题,在建筑工程中越来越突出,严重影响了工程质量和正常使用,也制约了保温隔热材料的推广应用。大量资料表明,造成这些问题的主要原因,除了地基不均匀沉降等引起的结构裂缝外,主要可以归纳为以下两个方面:一是墙材自身吸水率高、收缩大;二是所用砂浆保水性差、收缩变形大、粘结强度低、耐候抗裂性差及匹配不合理等。所研制的抗裂砂浆主要从以下几个方面对普通砂浆性能进行改善:

(1)材料补偿收缩机理。

为达到抗裂砂浆早期零收缩的目的,在原料中引入体积稳定剂,由于在水化后生成大量膨胀性晶体,产生体积膨胀,体内产生压应力和压应变,补偿了各类收缩变形,抵消或部分抵消了相应的拉应力,从而提高了整体的抗裂性。

(2)聚合物改性机理。

在水泥砂浆中掺入聚合物后,会引起水泥砂浆性质的一系列变化,诸如,抗折强度提高、抗压强度降低、弹性模量降低、刚性降低、柔性增加、变形能力提高、耐磨性增加、粘结强度提高、耐久性提高等。

(3)应力分散机理。

在抗裂砂浆施工中引入耐碱网格布,可以使抗裂砂浆的应力分散均匀,从而避免因应力集中引起的开裂。还可以通过引入纤维达到应力分散的目的。

(4)提高砂浆的保水功能。

在抗裂砂浆中加入保水剂,可以有效防止表面水分散失;同时在抗裂砂浆施工完成后,马上在表面刷防水养护液,也能有效防止水分散失,同时形成新的抗裂层,具有双层抗裂功能。

3保温隔热层厚度设计

国家标准GB50176-1993《民用建筑热工设计规范》对围护结构保温和隔热性能指标(K,R,0;,max)计算方法和计算参数做出了规定;行业标准JGJ26-1995《民用建筑节能设计标准(采暖居住建筑部分)》对带有抗震柱、圈梁等热桥部位的复合墙体的外墙平均传热系数K的计算方法做出了规定:行业标准JGJ134-2001《夏热冬冷地区居住建筑节能设计标准》对夏热冬冷地区节能50%目标时的外墙传热系数和蓄热系数也做了规定。

作者简介:李磊跃(1975-),男,温州市经济建设规划院,研究方向:工程项目建筑经济学、建筑施工技术与组织、工程合同管理、安全与风险管理等;杨远程(1986-),女,温州市经济建设规划院,硕士。

式中:Ri为窗户、空气层等热阻.上述K的计算方法适用于不带抗震柱、圈梁等热桥部位的多层结构。对于该保温隔热层结构,根据对材料层厚度、导热系数和蓄热系数的测定值,按公式(1)、公式(2)和公式(3)可以计算得到该保温隔热材料与其他主体建筑配合使用形成的围护结构热阻R、热惰性指标D、传热系数K以及达到节能50%的目标时墙体的最小厚度的值.使用加气混凝土砌块作为墙体结构,若围护结构其他部分(窗户、屋面等)能达到节能标准的相关规定,外墙不需要保温隔热施工即可达到50%的节能目标;而对于混凝土砌块或粘土实心砖,保温隔热层厚度需要分别增加到29.4mm和20.1mm才能满足节能目标,同时这些传统材料尤其粘土实心砖,既浪费能源,又对环境造成严重污染,不满足现阶段我国推广的“四节”节能产品的节能要求。钢筋混凝土主要用作建筑的梁和柱等承重、框架结构,其热阻较小,为达到节能50%的节能目标,其表层保温隔热层厚度不得小于30.7mm;可见钢筋混凝土梁、柱是建筑物中最主要的“热桥”部位,保温隔热施工中一定要尽量消除该种“热桥”。

参考文献

[1]王晶.浅谈几种建筑围护结构节能设计[J].甘肃科技,2006,(7):87-89.

建筑结构设计论文第4篇

1.1强柱弱梁为了提高高层建筑的抗震性能,结构设计时应该遵循强柱弱梁的原则。强柱弱梁有利于梁上塑性铰的形成,从而削弱地震作用,对框架柱起到良好的保护作用。如果塑性铰存在于梁上,说明塑性铰所需要的非弹性变形量较小,分布也较为均匀。如果柱中出现塑性铰,则表明非弹性变形集中于某一层的柱中,因此对柱的延性要求会较高。但是在实际工程中往往很难实现对柱的延性要求,如果处理不好,还容易出现较大层间的侧移,对建筑的整个结构安全性会产生影响。为了避免侧移对结构稳定性、安全性的威胁,设计时通常会将非弹性变形限制于梁内,使框架柱的弯承载能力得到保证,降低柱端屈服的产生。

1.2强剪弱弯延性破坏的主要形式就是弯曲破坏,这种破坏通常具有一定的预兆性,比如出现开裂或下挠等现象。但是剪切破坏则是一种脆性破坏,无法预知,如果建筑结构的某个构件出现剪性破坏,这个构件的抗震能力将会丧失,会产生更大的破坏性,甚至造成建筑倒塌。因此,延性设计的强剪弱弯,就是在避免构件与节点发生脆性破坏的前提下,保证建筑结构的整体安全性。为了避免梁、柱等构件发生脆性破坏,应该保证构件的受剪承载力要比构件屈服时的实际剪力高。因此,对于框架结构的高层建筑,在设计过程中应遵循强剪弱弯的原则,并依据承载力值与剪力值来进行科学设计。

1.3节点强锚固梁柱等构件的搭接处即为节点,对于高层建筑来说,节点最容易受到地震水平作用的破坏,因此,节点属于延性的薄弱环节,设计时必须注重节点和锚固的安全性。建筑结构构件的节点破坏主要原因是节点核心部位箍筋足或不到位引起的。为了提升节点的延性,必须保证节点部位混凝土的等级和箍筋的数量。设计时还可以在保证锚固长度的基础上,叠加一定的抗震附加锚固长度,利用锚固的长度来加强节点的延性。为保证梁柱屈服后节点的约束能力,框架节点的延性设计必须依据相关标准进行。

2结构构件设计措施

2.1连梁的延性设计在地震作用下,连梁的破坏通常会表现为局部混凝土压碎。其主要原因可能是跨高比过小,或者构件的抗弯能力高于其抗剪能力。如果出现较大震级,连梁应首先受弯出铰,所以必须控制好其跨高比。在室内如果连梁的高比过小,可考虑利用水平缝来分设两梁。通常室外连梁可以适当开大建筑窗,并将跨高比控制在3左右。为了遵循强剪弱弯的原则,配筋时应该将楼板钢筋的影响考虑进去,不用考虑对纵筋的加强;另外,需要配路箍筋并进行强化,可采用对角交叉配筋形式来提高连梁的延性。

2.2剪力墙和柱的延性设计剪力墙在布置时应该尽量均匀对称,使两个主轴方向的刚度尽量相同。墙体的开洞也应该均匀,尽量减少或避免错洞布置。通常独立墙的能量大多通过墙底出铰来进行消散。而联肢墙,则需要通过设置合理的开洞来消散能量,使其能够在连梁的梁端出铰或墙底出铰,而墙体的其他地方都不会存在塑性铰。在构造方面为了减少剪力墙的剪切破坏,可以在底部加强区适当增加剪力墙的水平受力筋,从而使剪力墙的抗剪能力得到提高。另外,还可考虑将柱箍筋的全长进行加密,以保证框架柱的抗侧能力。

2.3楼梯的延性设计楼梯的周围大多为剪力墙或填充墙,因此,其抗侧刚度要比其他位置的抗侧刚度大许多,地震时会表现得更加明显。楼梯间的结构受力情况较为复杂,楼梯板和平台梁需要承受弯矩、剪力和扭矩等综合作用。设计时可考虑采用板筋上下拉通和提高梯梁配箍率的方法来增加其延性。

2.4填充墙的延性设计填充墙的布置也应该做到均匀、对称,应该尽量减少填充墙引起的房屋附加扭矩。设计时可将填充墙作为荷载输入,其结构受力可不考虑。但是填充墙自身都具有较大的刚度,因此,应该尽量考虑沿竖向连续布置,使其形成砌体剪力墙,起到消耗地震能量的作用,从而避免薄弱层的出现。而且地震时填充墙受到的破坏也会比连梁早,这样便对主体结构起到了保护作用。另外,为了避免地震破坏时,填充墙对人员的伤害,填充墙应该采用较为新型的轻质材料,而且要设置一定的水平接续筋,使其与主体的连接更加可靠。

3结语

建筑结构设计论文第5篇

1.1结构规则性

新旧规范在建筑物结构规则方面的内容出现了很大变动,在这方面新规范增加了很多的限制条件。如:嵌固端上下层刚度比以及平面规则性信息等,这些都是新的限制条件。而且,新规范也明确表明了强制性的规定“建筑不应采用严重不规则的设计方案。”所以,针对这些新规范,结构设计师必须严格遵循并加以注意,以免在后期的设计方面处于被动状态。

1.2结构超高

对于结构高度而言,在高规与抗震规范中有了很严格的限制,特别是在新规范中,对于超高问题除了对于原来的高度增设为A级高度外,还增设了B级的高度建筑。所以,必须严格控制结构的高度因素,如果确定了结构为B级高度建筑物,甚至超过了B级的高度,其处理措施和设计方法就会有很大的变化。对于结构类型的变更,在实际工程设计中曾经出现过对该问题忽略的情况,致使施工图在审查阶段就未予通过,在这种情况下,应该对其进行重新设计或者进行专家讨论、评定。但是这些对于整个工程的规划、造价和工期而言具有很大的负面影响。

1.3嵌固端设置

嵌固端对于高层建筑而言,其一般设置于地下室的顶板处,因为高层建筑通常下会带有人防和地下室,那么嵌固端也有可能被设置于人防的顶板位置。而对于这个问题,结构设计师往往会忽略嵌固端的很多问题,如:上下层刚度比的限制、楼板的设计、上下层抗震等级一致性以及嵌固端位置与结构抗震缝设置的协调问题等,如果对其中一个方面造成忽视,那么就有可能为后期工程作业埋下很大的安全隐患。

1.4短肢剪力墙

对于墙肢截面高厚度为5-8的,在新规范中规定为短肢剪力墙。对于短肢剪力墙而言,在实际经验和试验资料中其在高层建筑中的应用增添了很多限制性条件,因此,结构设计师应该尽量避免对短肢剪力墙的采用,以免给后期工程的进展带来麻烦。

2建筑结构设计质量优化措施

2.1在结构设计概念的基础上进行优化设计

在计算中要对建筑结构设计的经济性在满足技术条件的基础上进行充分考虑。对于钢筋配量以及大构件的截面不能随意增加或减少,以防造成肥柱、肥梁或者瘦柱、瘦梁的后果。有些设计人员因为计算不清,所以就随意增加钢筋,并层层附加保险造成了超筋梁柱的现象。对于这种情况要牢记“弱弯强剪、弱梁柱以及弱拉强压”的原则,加强薄弱部位,注意构件延性以及钢筋的锚固长度,对温度应力的影响多加关注,重视钢筋的直线段锚固长度等等。另外,对于平面和立面的布置应该按照均匀对称规整的原则来设计,对于地震的多道防线进行综合考虑,以防止薄弱层面的出现。根据高层建筑结构设计的概念,应正常使用极限状态的验算。总体来说,对于结构设计而言,从其结构的选型、布置、以及分析计算上来看,每一步都要求进行详细的处理,综合考虑各方面的因素,力求达到最优设计方案。在建筑方案得到确定之后,其结构设计应尽量采取最合理、最科学、最经济的设计方案。对于各种受力部件的布置要力求达到其能承受的荷载范围。竖向承重构件在将荷载传到地面的同时,还要承受地震以及风的水平载荷。因此,在布置竖向承重构件时应将其放于有利于承受载荷的位置。除此之外,楼板的刚度也要考虑到,考虑其是否满足整体工程的要求等,并限制剪力墙的间距。而对于水平承重构件的布置而言,要力求达到简洁的传力路径,将楼面上的荷载以最快的方式传递到主梁上,再由剪力墙、柱等传给地面、地基。另外,地基土具有不确定性,并没有合理的模型对其精确性的具体描述,所以要根据实际总结的经验以及现有的理论知识来设计地基基础,并能够预见和分析可能出现的各种问题,从而制定出较为完美的处理方案。

2.2与相关专业人员做好沟通工作

高层建筑结构设计工作具有一定的复杂性,需要其他相关专业的配合与沟通,不能自己独立独行。由此可见,做好高层建筑设计工作不仅要具备扎实的专业理论基础,还要对于此相关的一些专业有所了解。如果在设计过程中出现了其他相关专业的问题,那么结构设计师要能够对其作出相关回应,然后组织专业协调会,力争达成统一标准,然后确定其设计的原则,以防止设计图出来之后因各个专业不协调而出现变更和返工的情况。

2.3计算机辅助设计的正确运用

建筑结构设计论文第6篇

建筑设计在进行高层居民建筑墙建筑时,在建筑断肢结构墙之前,必须满足以下的几个条件:一方面,在对结构墙进行地震设计时,应该确保断肢结构墙所承担的最低层振底部地震的破坏力不能超过种地不的一半;另一方面,对于断肢结构墙的下限,在断肢结构墙数量较少的情况下,如果不能满足底部地震抗拒力,应该把断肢结构墙当作一般结构墙来进行设计;最后,如果在结构墙的结构中,只存在少数的小墙枝,设计时应该对小墙枝进行一半的结构墙处理。

2高层居民建筑短肢结构墙的结构设计

对高层建筑断肢结构墙进行结构墙的设计之前,首先要对建筑的整体的结构墙进行设计规划,以确保合理、足够长度的长肢结构墙与短肢结构墙共同构建高层建筑。设计师在进行设计时,应该对短肢墙进行异形柱的设计,也就是断肢结构墙的变形特征框剪结构。设计师在经过准确的计算以及测量后,仅仅只有结构墙的结构形式符合短肢架构墙的条件而且应该将结构墙的参数设定为段式结构强的标准参数。由于是在居民建筑房间的间隔墙教会胡设置成断肢结构墙,因为是依据建筑间隔墙的位置进行规划设计所以断肢结构强对建筑产生不了阻碍。在短肢墙输两天不变的情况下,应该根据建筑结构的抗压力进行确定。不要把断肢结构墙设计的过多或者过少,这样都会使建筑变得太过软或硬,要坚持适度的原则,而且短肢墙的布置要均匀,以保障建筑结构钢心与质心相统一。在某些情况下,往往会出现高层民居进驻负荷过重或者是造型不规则的情况,断肢结构强应该被设计在平面之外的边角或者是建筑结构的周边,进而使建筑架构的整体性稳固,保持结构刚度的适度。另外,应该保证墙肢的厚度薄厚适宜,使间隔墙的表面没有突出的墙肢。最后,设计师要按照高层居民建筑平面抗侧刚度的标准,设计适合的中心剪力抢在高层建筑结构构中。

3高层居民建筑短肢结构设计中的要点

3.1对短肢墙的轴压比进行合理的控制

现阶段,在进行建筑设计的过程中,如果短肢结构墙在负荷的作用下,小偏差的条件下,说明短肢结构墙的延差,如果是大的偏压就是在大的轴压的情况下。因此,在进行施工建筑时,要特别关注混凝土的约束力以及裂缝情况。

3.2提高短肢结构墙的抗震性能

高层居民的建筑结构中,建筑的外边缘、角点的短肢结构墙的抗震性能相对较弱,在地震来临的时候就会遭到破坏。在高层短肢结构发生变形时,结构墙原有的变形就会得到加剧,进而导致墙体的裂缝。在进行设计的时候,设计师应该着重注意短肢结构的结构性能,采取科学合理的措施进行有效的防范。比如:设计师应该减少高层建筑边角周围短肢结构墙的轴压比例,增加钢筋的配筋率,适当的对小墙肢的抗震能力进行加强,以保障建筑结构的安全与实用。

3.3正确判断短肢结构墙结构内梁的属性

在短肢结构墙的墙梁设计过程中,假如墙开洞时墙梁的跨高比小于五,应该依据梁的实行对梁进行设计。在墙梁跨高比大于五的情况下,应该依据框架梁进行设计。因为高层家主结构的整个刚度以及抗侧度都是受到短肢墙墙梁的刚度影响的,因此,有关短肢墙梁的截面选择、梁的配筋以及设计都必须科学合理,进而提高建筑结构抗震性能。在高层居建筑短肢结构墙的结构设计中,建筑设计师可以对短肢墙的刚度进行适当的减少,使短肢墙的设计符合梁截面的要求,以保障短肢结构墙结构的稳定性与安全性。

4结语

建筑结构设计论文第7篇

几何特征使用几何特征描述设计信息,制定工艺规划,按照产品生产环节作业估算,拥有较高的精度。成本估算还可以应用近些年出现的专家系统和神经网络方法。神经网络较高的容错性和自动纠偏功能能够根据较小的工程信息量迅速的完成结构设计。

2建筑结构设计成本优化算法

(1)设计阶段优化的成本优化。有限元法是复杂结构优化的可靠而强大的分析手段,运筹学和计算机技术的应用能够为有限元法提供运算的平台,使有限元法成为了一种有效精准的工具。优化设计要求在相同使用性能下获得尽可能低的成本,但是不能够忽略建筑结构、设备等多种影响因素,把集成化和串行式设计为并行式,保证建筑使用要求的同时实现成本的优化。(2)结构设计成本优化。进行设计要选择设计变量,包括结构形状参数和使用材料等,通常情况下选取因素越多效果越好,但是设计变量越多工作量也越多,施工工程设计过程中要把优化效果不明显的参数作为预定量,选择设计量要根据客观实际制定一定的范围,数据并不是任意的。(3)选择设计变量之后根据变量建立目标函数,按照设计变量表示追求的指标的表达式或者由设计变量决定的无法用解析式表示的某种指标。目标函数是评定结构方案合理性的技术指标,包括体积、承载能力、造价、变形等都可以是优化设计的目标函数。(4)约束条件。约束条件是和优化变量有关的不能忽略的限制,约束条件需要尽量简化。但是进行结构设计时往往有很多的约束条件,最主要有两种:一种是设计标准参数,例如混凝土配筋率和梁的最小宽度等;另一种则是保证结构功能正常发挥的参数限制,主要有强度、刚度和稳定性等,这些约束条件和设计变量之间相关性不大,往往需要在复杂的结构计算之后才能够得出。(5)优化算法。优化算法要具有收敛速度快并且计算相对简化的特点,需要选择合理的优化算法模型,可以简化理解为在约束条件下求目标函数的极值或者最优的数学问题。在工程实际优化过程中约束条件和目标函数之间的关系是非线性并且是隐形函数,优化算法还需要根据优化问题的层次进行适当调整。

3建筑结构成本优化措施

对建筑成本的研究始自上个世纪60年代,主要形式是采用成本管理思想方法提供有助于决策的成本信息,有目标分析、作业分析等内容。之后我们对建筑成本、建筑方法功能、价值管理和生命周期等技术进行了归纳总结,认为只有更加精准和富有活力的施工成本预测才能更好的提供早期成本建议和市场预测。我们认为未来建筑成本的研究优化发展方向将是建筑成本优化实际工作的更深程度和工艺对市场、定额更好的适应性,这也是我国建筑结构的设计成本优化的工作目标。

3.1建筑设计阶段的成本优化

建筑的主体是建筑结构,建筑成本主要包括建筑结构、土石方、设备安装、地基处理等,建筑结构的成本超过了建筑总成本的50%,所以保证建筑结构的科学合理是控制建筑成本的关键,而建筑结构的成本控制,除了施工阶段外,设计阶段的工作也十分重要,建设过程中要采用科学有效的措施优化建筑成本,进而为整个建设工程节约成本。

3.1.1建筑设计阶段的成本优化

常见的建筑设计阶段通常采用的成本管理方法主要是限额设计,具体实现方法以及途径是目标成本的分解和工程量的控制,专家采用类似工程建设成本比例把成本估算按照比例分配到各个项目中,但是建筑工程成本的影响因素很多,采用经验分析的方法会造成较大的差异性,不能实现最优成本分配。建筑结构是建筑主体和支撑,进行结构设计的主要目的是满足建筑物的建筑功能,还要保证建筑结构拥有一定的承载能力,拥有一定的安全性、适用性和耐久性,这些都需要通过合理的设计成本来提高建筑结构的工程性能来实现。

3.1.2建筑结构的规划设计的成本优化

要遵循安全适用、经济美观的科学原则,还要通过合理的结构规划为施工提供便利,保证各项工程要素之间能够相互配合,保证设计水平的整体提高。进行结构设计要注意结合建筑设计的整体特征,避免产生彼此之间的矛盾。进行建筑设计要保证整体结构的安全性和经济性,因为建筑结构的设计规划是对建筑结构设计的根本层面,只有真正重视起这个工作环节才能为建筑工程后续的施工发展创造良好的条件,以下是建筑结构规划设计中的成本管理主要工作内容:(1)保证结构的合理性。结构方案是施工主要的参考资料基础,相同的建筑如果在不同方案基础上会产生不同的效果,设计者要保证施工方案的科学合理。结构方案要能够处理好结构和构件之间的关系,保证受力结构能够保持最佳状态,还要保证建筑结构的承载力和刚度。在设计方案中要注意简化受力途径,还要提高建筑结构抗风险能力,降低工程整体造价。设计者制定的设计方案要能够保证结构件的协调一致,保证设计达到最佳标准,建筑师和设计师之间要进行充分的沟通,创新结构设计形式,保证各项基础建筑功能,构建完善的结构设计体系。(2)保证结构设计的准确性。建筑工程是一项复杂的系统工程,安全性和舒适性是建筑工程的建设目标,进行设计要把设计者的经验充分利用起来,并利用计算机技术保证运算的准确性,减小计算和设计误差。同时还要保证计算参数的准确性,通过计算机程序进行计算时要和建筑的工程实际相结合,不能把所有设计过程都依赖电脑完成,设计者需要根据设计结构概念以及自身工作经验判断设计方案的合理性。

3.2施工建设过程中的成本管理

(1)结构材料的选择。建筑结构的基本属性是具有一定的承载能力,建筑物的承载力依靠优质的建筑材料和合理的施工设计方案完成,选择建筑材料需要遵循一定的原则,材料的使用要能够提高建筑本身的整体强度、刚性等参数,设计人员进行设计时要结合施工实际确定选择钢筋混凝土还是预应力混凝土,保证建筑物的安全性和经济性。混凝土变形和配筋率需要合理设定,降低工程间接成本。(2)基础形式的合理化。建筑工程基础的建设成本占到了总成本的30%,合理的基础结构设计对于建筑成本优化有着显著的作用。进行基础结构设计时如果存在承载能力较强的天然地基,而高层建筑为剪力墙结构形式时合理的基础形式应该是墙下条基和小筏板,通过这种形式减小基础的工程量。

3.3建筑整体设计成本优化提高

建筑的功能性和安全性需要把全局观念和整体意识灌输到每一个工程技术人员的观念中,合理配合整体结构和构件,保证建筑整体性的最佳受力状态和单独构件的最佳受力状态的协调统一,提高建筑刚性和延展性。

4结束语

建筑结构设计论文第8篇

近年来,国家加大了对建筑行业的宏观调控力度,明确规范了高层建筑物的安全使用要求,对高层建筑结构设计进行了更多的限制,主要体现在对高层建筑工程项目中可能存在的安全隐患的防控。例如:严格要求建筑结构设计中,建筑结构嵌固端的下层和上层感度比必须控制在规范要求范围内。国家不断出台了新的建筑结构设计规范规则,并明确指出在建筑结构设计中,不能使用不规则的结构设计方案。高层建筑结构设计人员在实际的设计工作中,必须严格按照新规范进行设计,避免为高层建筑结构设计埋下安全隐患。

2抗震设计问题

抗震设计规范明确规定了抗震设计目标,并针对不同地区、不同重要性的建筑对抗震设防进行了合理分类。因此,在进行高层建筑结构设计时,必须要使结构能够满足延性要求。同时,在抗震设防中应当遵循多道设防原则。当第一道防线的抗侧力构件在遭遇地震被破坏后,要能够有第二道,甚至是第三道防线立即接替,使建筑物不至于倒塌。当高层建筑物在遭受地震后,重力荷载是导致建筑倒塌的直接原因。因此在进行高层建筑结构设计时,必须优先选择轻质高强的原材料。在满足强度和结构变形要求的前提下,综合考虑经济性因素,尽可能选用质量较轻的材料。高层建筑结构设计师要能够与时俱进,积极应用成熟、可靠的现代化技术和新产品,不断提高自身设计水平,为建设优质工程贡献自己的一份力量,为企业争取良好的经济利益。在高层建筑结构设计中,利用结构自身的抗震性能来抵抗地震作用,是一种较为被动消极的抗震政策,建筑结构一旦发生破坏,造成的人员伤亡和经济损失将会不可估量。因此,在进行高层建筑结构设计时,必须通过为结构施加控制装置,加强结构减震控制。在地震来临时,控制装置和结构自身共同承受地震作用,通过二者的协调作用,能够有效减轻地震反应。基础隔离是结构减震控制的一种很好的方法,通过安装隔震装置系统形成隔震层,能够有效延长结构周期,使结构本身处于延性工作状态,有效吸收地震能量,减小结构主体的地震反应,避免房屋破坏甚至倒塌。

3建筑超高问题

建筑开发公司为了为自身谋取更多的利益,通过提高建筑高度来提高土地的利用率,虽然在很大程度上降低了工程建设项目成本,但也给高层建筑结构造成了超高问题,并存在很多私自在建筑物上增高的违反操作现象。我国部分城市处于地震高发区,在进行高层建筑结构设计时,设计师要充分根据不同地区的地质地貌情况,考虑当地地震发生的趋势。建筑的超高问题严重影响了高层建筑结构的抗震效果,为建筑结构的安全使用埋下了隐患。近年来,国家逐步提高了对建筑物超高问题的重视程度,要求建筑结构设计完成后必须经过层层审批,通过后方可开工。这样,在很大程度上避免了开工一段时间后又发现超高问题,有助于确保工程进度。同时,高层建筑施工是一次性的工程,中途返工会造成高额经济损失,加强审批,有助于避免不必要的经济损失,防患于未然。目前,我国对于高层建筑结构高度有了更加详细的划分,建筑设计人员应当在设计之前明确自己的结构高度分类,并严格按照相关规定进行设计,提高高层建筑结构质量安全。

4嵌固端设置问题

目前,大多数高层建筑物设有两层或两层以上的人防或者地下室。高层建筑物的人防及地下室的顶板上都要设置嵌固端。此时,高层建筑结构设计就要考虑嵌固端设置可能造成的问题。在进行结构计算时,要考虑嵌固端设计对计算参数的影响,全面考虑其可能造成影响的多种可能,有效协调高层建筑结构抗震缝的宽度及缝隙与嵌固端的位置,并将嵌固端的上层和下层对应的感度比值控制在规范要求的范围内。此外,在进行高层建筑结构设计时,要为嵌固端楼板设计合理的位置。在进行嵌固端的设计时,要综合考虑各方面因素,选择最优的设计方案,尽可能避免其在高层建筑结构使用过程中出现安全问题。这样,在确保结构安全的前提条件下,有助于促进建筑工程项目的顺利完工。

5结语