首页 优秀范文 系统设计论文

系统设计论文赏析八篇

发布时间:2023-03-15 15:02:35

序言:写作是分享个人见解和探索未知领域的桥梁,我们为您精选了8篇的系统设计论文样本,期待这些样本能够为您提供丰富的参考和启发,请尽情阅读。

系统设计论文

第1篇

为了使得家庭安防系统能够远程监听室内安全状况,本系统在室内安置一个麦克风并采用手机来监听麦克风位置的动静,也就是起到监听的效果,本设计利用SIM900A的GPRS模块进行短信的收发或接听电话,SIM900A模块是一款支持中文短信息的工业级的新版GSM模块,工作在EGSM900和GSM1800双频段,电源范围为直流3.3~4.8V,休眠状态电流消耗为3.5mA,空闲状态为25mA,发射状态为300mA(平均),峰值为2.5A;可传输语音和数据信号,功耗在EGSM900(4类)和GSM1800(1类)分别为2W和1W,通过接口连接器和天线连接器分别连接SIM卡读卡器和天线。SIM电压为3V/1.8V,TC35i通过AT命令可双向传输指令和数据,可选波特率为300b/s~115kb/s,自动波特率为1.2kb/s~115kb/s。它支持Text和PDU格式的SMS(ShortMessageService,短消息),可通过AT命令或关断信号实现重启和故障恢复,本设计只用到了SIM900A其中5个引脚,分别是VCC、GND、TXD、RXD、MIC。

2人员闯入室内检测模块设计

为了能准确的检测到人体入侵,本设计采用了主动式红外检测方式,主动式红外需要一个红外发射管以及一个红外接受管,正常情况下,两个管子之间由红外线连通,但是当有人入侵时,红外线被阻隔。红外对管跟单片机相连的电路图如图2所示图中红外接受管串联了一个1K的电阻,而红外发射管串联了一个500R的电阻。同时在红外接收管的正极端接到了单片机P32口,当接受管能正常接收到红外光时,P32为低电平,相反,当接收不到红外光时,P32为高电平。

3人员闯入报警设计

当有人入侵的时候,除了做到远程短信报警,也需要有本地报警,起到震慑罪犯的作用,本设计中本地报警就采用了蜂鸣器。蜂鸣器的驱动采用单片机的P2.4口,由于蜂鸣器需要较大的电流来工作,单片机纯IO口无法达到那么大的电流,因此需要外接三极管来放大电流。三极管采用的是PNP型三极管,当P2.4为低电平时,三极管导通,蜂鸣器的正极为高电平,就会响起来。图3是其连线图。

4按键电路

本设计除了主动检测人体入侵和自动报警外,还需要对各种参数进行设置,比如要设置主人电话号码,设置当前时间,查询报警记录等等,这就需要用到人机交互功能,这里采用了四个按键作为人机交互设备,此按键属于微动开关,每个按键上都用了10K的上拉电阻,当按键没有被按下时,按键所对应的IO口固定为高电平,当按键被按下时,IO口直接跟地短路了,所以IO口为低电平,单片机就是读取IO口的高低电平来判断是否有按键被按下。

5时钟电路

第2篇

水平控制系统闭环控制结构如图1所示,图2是系统硬件结构框图。系统主要由姿态测量部分、非线性控制器与液压执行部分组成,各部分作用是:姿态测量部分检测平地铲水平倾角,非线性控制器根据倾角信息对电磁阀施加PWM脉宽控制信号,液压执行部分通过扭矩输出使平地铲保持在水平位置。系统的硬件包括Cotex-M3处理器、ADIS16355及SD卡存储器等。Cortex-M3处理器使用了ARMv7-M体系结构,具有较高的性能和较低的动态功耗[9]。从性能能上看,Cortex-M3处理器可以作为本文的融合算法以及控制算法的硬件实现。Cortex-M3处理器使用SPI接收来自ADIS16355的数据并保存在SD卡存储器。其采样得到的三轴角速度和加速度计数据通过传感器信息融合测量,从而得到平地铲水平倾角;数码管用于显示当前测量角度和控制参数等,可通过按键改变显示模式和参数调整,两者组成简单的人机界面,易于调试;RS232串口主要用于接收高精度姿态航向参考系统AHRS500GA发送的数据。

2融合算法与控制算法

2.1基于卡尔曼滤波的姿态解算算法利用加速度计对重力矢量进行观测,以观测值同重力常量的误差值修正陀螺对姿态角的测量值,设计卡尔曼滤波器对状态进行融合估计[10]。根据该方案,传感器信息融合处理过程如下:1)利用式(6)计算更新四元数,并转换为姿态角。2)观测矩阵

2.2控制系统数学模型根据平地铲运动特征,建立平地铲的抽象物理模型,如图3所示。按以下方法建立平地铲运动的载体坐标系xoy:以平地铲质心o为零点,系统输入量x为液压系统阀芯位移,输出量y为油缸位移,平地铲转动倾角为θ,建立传递函数模型。

2.3控制器的算法设计

2.3.1适用于平地铲运动的控制算法考虑水田激光平地机的作业特点,控制系统在设计上必须保证平地铲在倾角角度情况下能够迅速回位到水平位置,并且尽量减少超调和避免振荡。传统PID控制有较好的适应性,但是还不能提供最优控制,其结果是导致超调失效而影响控制效果。目前,基于动态补偿的最优控制在工业中得到应用,其特点是能够准确反映信号的变化趋势,产生有效的早期修正信号,以增加系统的阻尼程度,从而改善系统的稳定度[12]。本文鉴于非线性系统近似最优PD控制的特性,引入其算法,针对平地机做出相应修改,进行相应尝试。控制器框图如图4所示,姿态测量单元提供位置反馈θ。积分控制、比例控制以及微分控制的作用如下:①积分控制放在前馈通道,其作用是抑制平地铲在受到外界恒定负载情况下产生的输出误差,增益输出为y0=K1θ。②比例控制作用输出为y3,等于两次连续位置反馈值的差值,增量y1等于信号y0减去y3,通过数字积分器累加。③微分反馈信号y2提供参考速度,其大小正比于平地铲输出转速,与参考信号y1组成一个局部的速度内环。微分控制器设计目的是适合平地铲在大干扰情况下的操作。④系统输出转矩的参考值为Trf,送入零阶保持器,输出力矩实际值为Tcm。Tcm正比于零阶保持器的输出。

2.3.2控制器参数的确定平地铲运动机构近似于二阶系统,有以下方程成立。

2.3.3辅助补偿器的设计采用Lyapunov再设计方法设计辅助补偿器以补偿非线性部分和外界扰动对PID控制器的影响。对于渐进稳定的线性系统,必存在实对称正定矩阵P,满足以下关系。

3试验与分析

为了验证本文提出的平地铲水平控制系统,本文进行融合算法的验证试验以及平地机田间试验。

3.1传感器融合算法验证试验

3.1.1试验方法通过AHRS500GA同步测量平地铲姿态信息并作为准确数据,验证基于ADIS16355的姿态测量单元有效性。美国Crossbow公司生产的AHRS500GA是高精度惯性姿态测量器件,其采样频率为100Hz,测量精度为:航向角0.2°RMS、俯仰角0.03°RMS、横滚0.03°RMS[15]。融合算法的验证实验步骤如下:①在平地机上安装水平控制系统,保证系统坐标系与载体坐标系一致;②启动系统,人为摇动平地铲,同步记录ADIS16355与AHRS500GA数据;③PC平台上运行MatLab融合程序对采样的数据进行处理。

3.1.2试验结果分析图5为一次典型的试验结果,图5(a)为平地铲倾角测量值对比,图5(b)为局部放大结果。1)从图5(a)、6(b)中可见,0~400s区间平地铲振动较小时,利用加速度计计算倾角值较准确;当外界扰动导致振动加剧时,误差可达±5°以上,无法单纯用加速度计解算姿态角。2)本设计姿态测量单元能准确测量平地铲动态倾角。由图5(b)可见,在动态环境下融合结果能与AHRS500GA提供的参考倾角结果呈现良好的一致性,其误差绝对值不超过±1°。3)通过传感器实时判断平地铲运动状态,利用加速度计对重力矢量观测值来修正陀螺漂移,可以有效降低姿态角计算误差。

3.2平地机田间试验

3.2.1试验方法组装好平地机的高程和水平控制系统,在水田进行平地试验,开启以上系统并保证正常工作,记录相关数据。图6所示为水田激光平地机田间作业后的场景,可以看出平地效果良好。

3.2.2试验结果分析图7所示曲线为平地机平地过程中控制系统所测量的平地铲水平倾角。田间试验结果分析如下:1)从图7(a)可知,平地铲倾角变动基本控制在±1.5°以内且渐进稳定,满足平地机作业要求。2)从图7(b)和7(c)可知,在外界干扰较大导致平地铲晃动严重时,水平控制系统起作用,通过PWM输出反向力矩,使平地铲恢复到水平位置,其过程是渐进稳定的。3)由于在控制算法推导过程中,平地铲的传递函数是简化和抽象的,如忽略机械连接部分的间隙、挠度,液压油缸对于控制系统的响应有延迟现象等,最终导致了控制系统的效果受到影响。

4结语

第3篇

自动调焦系统利用精密线绕电位器检测准直镜的位置,由电位器的中心抽头取出的电压、温度采样值和接收的主控计算机距离信息送DSP进行运算,得出误差电压值。如果误差电压不等于零,DSP送出驱动脉冲,经功率模块放大驱动步进电机转动,通过机械传动带动准直镜移动,同时也带动检测电位器的转轴向减小误差电压的方向旋转,直至误差趋近于零,系统处于平衡状态,以达到最佳的成像效果。

2系统设计

2.1DSP模块

采用DSP(TMS320F2812)作为自动调焦系统核心。TMS320F2812是TI公司针对数字控制领域而推出的,具有控制精度高、速度快、使用灵活以及集成度高等优点,已广泛应用于工业自动化、光学网络以及自动化控制等领域。TMS320F2812的CPU运行速率可以达到150MIPS,数据总线为32位,内部集成乘法累加器,指令采用流水线处理,使得数据处理的能力大大增强;同时在片内还集成了128KB×16位的Flash存储器和18KB×16位的SARAM存储器。针对数字控制领域,还集成了两个事件管理器(可以发送12路PWM信号),为电机及功率变换控制提供了良好的控制功能,还兼有死区控制功能。本系统并没有使用TMS320F2812全部外设接口,而只是使用其中的一小部分,如GPIO接口和EVA/EVB接口。由于采用可编程逻辑器件(FPGA),使得DSP的硬件电路设计非常简单。将DSP的数据总线、地址总线、读写控制线以及中断信号线都引入到FP-GA中,根据特定的要求,在FPGA内完成时序和逻辑设计,如为TL16C654、AD7864提供地址选通信号等。由于电机的信号线、限位开关线数量很多,需要本系统的I/O口的数量较多,还需要在FPGA内完成扩展I/O口的功能。

2.2FPGA模块

选用Cyclone系列FPGA中的EP1C12Q240C8作为整个系统的时序和逻辑控制核心,EP1C12Q240C8提供12060个逻辑单元(LE)和173个I/O口,可以内嵌4K的RAM。采用模块化的设计思想,对FPGA设计进行模块分解,FPGA需要扩展I/O口的功能,产生PWM调宽波信号,还需要为TL16C654和AD7864提供片选和读写信号等。TL16C654地址译码模块:在FPGA内部,针对DSP的读写以及地址信号进行译码,为TL16C654提供读写信号以及片选等信号。AD7864地址译码模块:对DSP的地址信号进行译码,为AD7864提供读写、片选以及通道选择等信号。在设计FPGA时,采用VHDL开发语言,在Quar-tusII环境下开发程序。根据FPGA的设计框图,在设计程序时采用模块化的设计思想。每个模块都独立设计(即每个模块都是一个文件),最后建立一个顶层文件,将各个模块有机地联结起来。

2.3串行收发模块

自动调焦系统与主控计算机通信时,必须要提供串行通信接口,这里采用TL16C654完成并行数据和串行数据之间的转换。控制器在与其他分系统进行串行通信时,由TMS320F2812作为控制核心,间接控制TL16C654串行发送或接收。FPGA是DSP和TL16C654之间通信的桥梁,为TL16C654提供片选和读写信号。当TL16C654的接收FIFO满等情况发生时,会产生中断信号,FPGA对TL16C654的中断信号组进行处理,然后向DSP发送中断信号,并协助DSP得到TL16C654发出中断的通道号。TL16C654在发送或接收数据时,可以采用中断或查询的工作方式。在控制器与外部进行串行通信时,TL16C654在接收时采用中断方式,发送时采用查询方式。

2.4模拟量采集模块及数字温度传感器

模拟量采集选用美国模拟器件公司生产的AD7864模数转换芯片,分辨率为12位,可实现4通道同时采样。数字温度传感器采用型号DS18B20,DS18B20与微处理器连接时仅需要一条口线即可实现双向通信,测量范围:-55℃~+125℃,分辨率0.5℃。

2.5电机驱动器及执行电机

步进电机驱动采用UP-4HB01B步进驱动芯片。它把FPGA发出的脉冲信号转化为步进电机的角位移,FPGA每发一个脉冲信号,驱动器就使步进电机旋转一步距角,步进电机转速与脉冲信号频率成正比。该驱动芯片适用于四相六出头混合式步进电机,单极恒压驱动,四相八拍励磁方式。执行电机选用常州微特电机厂生产的混合式步进机,型号为42BYG015,电机为混合式四相步进电机,按四相八拍方式工作,步距角为0.9°。

3结论

第4篇

虽然在开展采购工作过程中,部队完全参照各项指标和规范进行采购和资金支付,并严格的落实了集中式的采购方法,采购工作取得了一定成效,但是依然存在很多问题,具体表现在以下几个方面:

(1)应用集中采购的方式,如果部队的规模较小,规模效益会不明显。这种情况主要存在基层一些部队,现在被广泛适用的采购制度是建立在团营级的部队组织中,这样一来,部队需要的物资少,采购的规模就会变小,采购量难以与师以上的部队组织相比,缺少市场采购优势。

(2)驻地偏远,采购和配送的成本高。很多基层部队因为常年驻扎在偏远地区,比如,两国边界处或者西部偏远地区的边防部队等。

(3)采购的各项费用都是人工进行计算的,因此,财务结算的效率较低,尤其是在地方某些部队,物品的采购、下单、运输等的结算全部是由部队专业部门通过手工记账的方式完成的。

(4)部队物品采购的范围小,有很多物品都不能满足部队需求。当前,很多部队大批量采购的是一些生活必需品,但是到当地供应商处购买时种类较少,有很多的物质都不能满足部队中官兵的需求。

2后勤物资统购系统的设计

部队后勤中的物资采购系统在很多功能上都与应用软件有所区别,可以说,后勤物资的统购系统既有软件功能又有硬件功能,是一类综合型的系统。鉴于这种原因,在对该系统软件设计和开发时要考虑到硬件和软件的一些设计上的基本要求,要对该系统的软件功能和硬件功能以及网络配置重点考虑。

2.1系统的网络设计要求

部队后勤物资统购系统采用的应用程序为Web系统程序,该程序是分布式的,能够满足部队的网络要求,但是应用这种程序首先要保证部队网络的通畅。主要是部队中的网以及部队内部的Internet网络。值得注意的是,内部网络和外部网络是不能随便接在一起的,并要采取一些隔离的手段。只有经过部队的上级领导同意,用于执行军事事务的时候才能将内部网络连接到外部网络中。

2.2客户层的设计

该系统应用的是WebService应用集成手段,该集成手段能够使所有运行在互联网上的服务器都能够以集成的方式组合在一起,可以使分散的计算机与各种系统设备组合到一起运行,大大提高了用户的体验效果。随着这种集成方式被大范围的应用,系统开发的重点已经转变成了应用的效果。这种集成组成的方式能够取代Web应用上的其他物件,能够成为未来信息技术的主导。网络中为用户提供服务的主要方式是通过手机和计算机的终端对企业中网站进行访问,以此实现服务的功能。网络站点可以对WebService集成手段进行查询,查询的主要内容是该系统以公开形式存在的目录,也可以是设置了访问权限的私有形式的目录,首先获取提供服务的信息源,再将信息处理的结果返回到系统的使用客户。通过各种系统的接口可以将传输来的信息转换成可以利用的程序对象,再将这种能够使用的程序对象传输到业务系统处理。业务系统存在于逻辑的中间位置,网络中的一切功能实现就是靠业务层。

2.3系统业务逻辑层的设计

部队后勤统购物资系统的主要部分就是系统的业务逻辑层,这种业务逻辑层功能强大,能够将整个系统中的所有业务逻辑顺利完成。在特殊平台上构建这种业务逻辑层的主要方法有以下两种:首先是Servlet和JavaBean这两种技术来实现,其次是通过选择系统组件的方式来实现,重点选择的组件有EJB系统组件。前两种技术在处理业务逻辑时相对简单,并且处理系统功能时的要求不是很高,也由此造成了其安全性和稳定性不高。但是后者处理的对象集中性较强,一般都是存在于企业中或者独立的部门中,因此,该系统在一定程度上比上一种技术更加安全和可靠,唯一的缺点是对其开发的成本较高,并且该系统的组成较为复杂,如果发生故障处理起来会有一定难度。

2.4数据持久层的设计

第5篇

在智能建筑的系统集成方面,有着不同的做法,这完全是正常的现象。纵观我国智能建筑的发展,真正在建筑界广泛进行规划和设计也只有几年的时间,也就是从九十年代初,我国基本建设发展的高峰期间,在智能系统方面才逐渐被广大业主、房地产开发商以及设计人员理解、认识和接受,并开始着手进行设计和实施。但作为智能建筑中的一些子系统,早在80年代就开始进行了设计。自从96年初在上海召开了我国第一次智能建筑研讨会后,在行业内才真正有系统、有目标地在这方面进行了大量的工作。随着对智能建筑的设计、研究,才开始提出对各系统的集成问题,许多承包商在此时,为了公司业务的发展,纷纷开始拓展自身的业务范围,打出了系统集成商的旗号。

然而在国际上,智能建筑的发展,并不象我们那样炒作的热火朝天,而是本着务实的态度,该具备哪些系统,就由那些有专长的承包商来承担。需要集成到何种程度,均是从实际应用的角度来衡量,在有的系统之间的联络,可通过日益发展的互联网进行。从而达到各有必要联系的系统之间的信息资源能够共享。

关于楼宇自控系统,"民用建筑电气设计规范"JGJ/T16-92中对其提得较为明确,就其功能来看,几乎包括相当多的方面,但其主要的目的在于:

1.确保建筑物(群)内环境舒适;

2.提高建筑物自身以及人员与设备的整体安全水平和灾害防御能力;

3.通过最佳控制节省消耗;

4.提供可靠的、经济的最佳能源供应方案,进行节能管理;

5.使设备高效运行,减轻人员劳动强度;

6.不断地、及时地提供有关设备运行情况的资料,集中收集、整理,作为设备管理决策的依据,实现设备维护工作的自动化。

依据以上的应用功能,BA系统应划分为二个子系统,它们是:

1.防火与保安子系统,包括:

a.火灾报警与消防控制系统;

b.人员出入监视系统;

c.保安巡更系统;

d.防盗报警系统;

e.其它需要实现安全监控的系统(如地震监视与报警,煤气泄漏报警等等)。

2.设备运行管理与控制子系统包括:

a.采暖、通风与空气调节(HVAC)系统;

b.给水(含冷水、热水、饮用水)与排水系统;

c.变配电与自备电源系统;

d.电力供应与照明控制;

e.其它一切需要监控的系统(如电梯、广播、电缆电视等等)。

从技术角度来看,这两类子系统的划分,具有硬件设备资源的共享好,便于整体的管理和维护,可以统筹在正常与异常情况下的设备控制方案,从而达到实现全面的集中监控。

这种系统的构成方式,与国际上有些做法是相类似的。只不过我国的消防管理体制要求火灾自动报警系统应为一个独立的系统。但随着技术的发展,逐渐在某些地方,允许火灾自动报警系统向楼宇自控系统发送信号。既平时BA系统可以从火灾自动报警主机上获取其运行状态的各类信号。火灾时,火灾自动报警系统可向楼宇系统发出信号,这种单向性的信息流向,反映的是我国消防部门管理的需要。例如某家国外著名的建筑设计事务所,在我国承担的几项工程设计,就是将楼宇自控系统和火灾自动报警系统的一些功能混合起来,并将应归到消防系统联动的消防设备,纳入到楼宇自控系统中去控制。在实施过程中,由于管理体制的要求,不得不按国内的要求进行改动,将消防的专用设备归到消防联动中。除消防之外的楼宇自控系统中的各项子系统,则可实现小集成。

这种做法,我们在北京的某项重点工程设计中,就采取了将楼宇自控系统、闭路监视系统、防盗报警系统、门禁系统进行了有机的集成,或称之为联动,以满足实际运行管理的需要。

在这项工程中,有关子系统的联动关系,可举某事件为例,看其之间的相互关系和动作。例如保安系统设置的闭路电视和防盗报警系统,白天由于监视区域内人员来回走动,闭路监视系统处于工作状态,而防盗报警系统则处于撤防状态。由于此建筑属于业主自己使用,人流相对在上班期间流动。当下班人员离开后,防盗报警系统处于设防状态。考虑到夜间无人办公,有些公共区域的照明由BA系统控制关闭,留下少量的照明灯。一旦防盗报警的探测器探测到有人非法闯入,立即将报警信号送至BA系统,由BA系统控制开启相关区域的照明。同时,闭路监视系统立即进行跟踪监视,保安监控的录像机则进行实时录像。

另外,对于大楼内设置的门禁系统,也与消防报警系统进行联动,当发生火灾报警并确认后,有关的消防通道上的门禁也将被旁路,使人员能够顺利地进行疏散,保证了楼内人员的安全。通过对工程设计的实践感觉到,在设计中,若要做到各子系统能有机地进行联动,首先要求各子系统在通信协议上应该一致,避免在集成过程中出现无法集成,或是需要一些额外的设施方可集成,给业主造成不必要的负担。关于信息资源的一致性,这不仅是对承包商提出要求,而是对智能建筑系统的全过程提出要求。因为目前市场还未达到一个统一的规范,所有的系统并不完全是由一家承包商来提供,而各生产厂家的产品并不都是完全一致,它们的通信协议也有所不同。就目前市场情况来看,在确定产品时有这么几种情况:

一种是由系统集成商中标后,由中标方统一考虑各子系统产品厂家。这种做法,容易选择通信协议一致的产品,能够较好地达到相关子系统之间的联动(或集成)。也就是在BMS系统中,各子系统之间信息资源容易达到共享。

第二种做法是由业主自行招标或确定各子系统的承包商,完后再由系统总包来负责。这种做法,业主往往片面地追求了价格,而忽略了系统集成中所必须注意的问题,即系统未达到统一的通信协议。有的系统不具备开放性,由于先天不足,给总包方带来了困难,最终还是业主自身受到损失。为了能在BMS下集中管理,要达到各子系统之间资源共享,又须花费额外资金进行弥补。例如在设计阶段,设计人员根据工程要求和特点合理进行子系统之间的集成,在集成过程中,可以要求各子系统的通信协议应能符合TCP/IP协议。

在楼宇设备的控制中,我们强调产品和系统的开放性,目的也就是在于使产品能有信息资源的一致性。值得注意的一点是,有许多产品供应商或承包商都称自己的产品或系统是开放的,能与各家的产品进行通信,将不同厂商的产品或系统集成在一个系统内,并由主系统对其进行监视和控制。但必须注意,并不是所有的产品都是完全开放的,它们可能是由于通信协议的差异导致系统集成中的不尽人意,或是需付出额外的软件编制费用,修改接口界面。

例如有两家公司的产品均符合BACnet协议,然而第一家公司的产品是BACnet9.6kbMS/TP,第二家公司的产品是BACnet156kbArcnet,当两家公司产品接进同一网络时,则会因为传输速率的不同,而出现互联方面的困难。所以并不是所有符合BACnet协议的产品都可互联,我们还必须看这些产品的详细特征。

因此建议从规划设计开始,就必须强调系统的开放性,强调系统联网中的信息资源共享问题,在以后施工、安装过程中,均应有所要求,前后一致,满足要求。

鉴于智能建筑中目前存在的问题,一是尚未有正式的设计标准,同时也没有统一的验收标准,具体要达到一个什么样的程度,以什么标准来验收,很难有一定论。因而造成了有些系统运行不正常的结果,这在有些地方的调查中占有一定的比例。这同样是存在于设计和施工质量的问题。对于设计和施工中存在的问题,大致有以下几点:

1.设计人员对此了解不深,有的单位基本不设计智能化系统,而是交给系统承包商。而系统承包商由于在商务谈判中费用较低,因此在系统深化设计中,对挡次、标准等有所降低,控制点较少且不合理,精度满足不了要求,只求系统能运行起来。

2.设计BA系统不仅是电气专业弱电人员的事情,BA系统中,占大头的是HVAC,这就要求必须与设备专业的人员密切配合,包括承包商的深化设计等,均应与设备专业人员密切配合。否则,对原设计人员的设计思想,控制要求等,均不能做到切合实际,而只能将系统运行起来,达不到预期的目的。

3.施工问题,质量达不到要求,目前国内的承包商,由于经营方面的原因,在工地现场施工人员中,只有一部分是公司的员工,大部分是临时或是合作的施工方,许多人的素质不高,野蛮施工的情况时有发生。

第6篇

本设计软件系统主要实现的是节点间的无线通信、PC机与节点的信息传输,协调各模块的联通。结构关联示意如图2:PC机与ZigBee协调器通过串口进行通信,由上位机进行显示,上位机向协调器发送温度设定命令,通过协调器发送给各传感节点,协调器与各节点的通信都是通过Zigbee无线传输协议进行无线传输的。传感节点在检测到温度后会进行判断,温度若超过上位机设定的范围便会报警,并启动相关温度调节装置。检测的同时也会无线发送到目标设备,距离较远的节点将通过路由节点进行跳跃,再传输至协调器。

2硬件系统设计

2.1ZigBee协调器(路由)节点

ZigBee协调器的电路设计包括:一个ZigBee模块、一个RS232串口模块、一个JTAG接口/复位模块、一个电源模块、LED指示灯模块等。1)JTAG接口。实际只用到了P1.4、P1.5、P1.6、P1.7、P2.1、P2.2、VCC、GND、REST五个引脚,其它引脚悬空,该电路可将程序通过仿真器烧写进芯片中。2)电源电路设计。由于ZigBee模块需要3.3V的电源,本设计供电为两节5号电池供电,可不需要稳压芯片进行稳压。3)复位电路设计。4)串口电路设计。下载程序和调试通信两个作用,采用MAX232做RS232电平与TTL电平的转换芯片,MAX232有两路电平转换。

2.2传感节点设计

传感节点设计包含有DS18b20温度传感器,温度调节控制装置(本设计用电机代替),LED指示灯。1)DS18b20设计。DS18b20只需一条线就可以和处理器通信。2)电源供电电路。Zigbee模块工作电压为3.3V,外部供电为5V输入,需要AMS1117—3.3电源稳压芯片进行稳压。3)JTAG仿真电路。4)模拟温度控制器(电机)电路。

3软件系统设计

3.1IAR集成开发环境

本系统程序的调试编译用的是IAREmbeddedWorkbenchIDE,它是一套开发工具,用于汇编、C或C++编写的嵌入式软件程序进行编译和调试。IAREmbeddedWorkbench适用于大量8位、16位和32位的微处理器和微控制器,用户在开发新的项目时也能在所熟悉的开发环境中进行。该集成环境包含了IAR的C/C++编译器,文件管理器,文本编辑器,汇编器,链接器,工程管理器及C-SPY调试器等。它为用户提供一个易学且具有最大量代码继承能力的开发环境,和对大多数和特殊目标的支持。IAREmbeddedWorkbench有效的提高了用户的工作效率,通过IAR工具,用户可以大大地节省工作时间。针对不同芯片的代码优化器,IAREmbeddedWorkbenchIDE可以为微处理器生成非常高效的FLASH/PROMable代码。

3.2VisualBasic语言开发环境上位机设计实现

VisualBasic是目前一种应用于图形界面比较多的开发语言,它衍生于BASIC编程语言。VB用有快速应用程序开发和图形用户界面开发系统,它是微软开发的,用于协助开发环境的驱动编程语言。在现在的使用标准来说,VB是目前世界上使用者对多的语言,在目前图形化界面开发来说,VB是比较好的开发语言较容易应用ADO、DAO、RDO轻松创建ActiveX控件和连接数据库。对于想快速建立一个应用程序,VB将会是一个很好的选择。本设计的上位机制作,VB是一个很好的选择。

3.3ZigBee协调器软件实现

协调器是直接与上位机通信的节点,它的任务是协调各感知节点发送过来的数据,使得数据有序传输到上位机显示。

3.4Zigbee传感节点软件实现

传感节点是可以在一定范围内定点位置,其任务只要是实时检测温度,周期将数据无线发送给协调器,同时,节点上的温度调控装置根据温度启动,进行温度调控。

4系统测试

第7篇

开发和建设科研管理信息系统是利用信息技术和网络技术突破传统科研管理模式存在的弊端,构建代替人工、信息共享、学科化服务、数据分析的快捷、准确、高效的科研管理新模式。其工作流程是科研人员通过系统对科研工作进行日常管理,科研管理人员的工作主要是对信息的审计和更高层次的利用。而科研管理信息系统具有远程性、规范性、动态性、集约性等特点,能很好地收集、整合与传递科研信息,提高工作效率,保证科研数据的及时性和准确性,较好地解决传统科研管理带来的程序繁琐且重复的弊端。系统管理工作的动态性和参与性为科研人员提供了日常科研工作的信息化管理平台。

2系统设计

2.1基本原则与目标

研究所科研管理信息系统是基于网络的科研信息数据管理平台,在系统整体过程中要充分把握规范性、安全性、实用性、可靠性、可扩充性原则,采用面向对象的程序设计语言和模块化的软件开发方法。系统建设目标是建立一个能够覆盖研究所主要科研业务管理的计算机信息管理系统。以网络为平台,利用计算机网络技术简化人工管理流程,通过信息的一次录入,实现信息多方共享、综合分析加工和信息的批量导出导入,满足不同管理层次对各类信息的需求。

2.2功能设计

系统除了能够实现数据录入、权限浏览、报表打印、留言板等功能外,还需要实现节点推送功能、关联查询功能、统计/汇总功能和批量导入导出功能。节点推送功能:系统将业务流程串接起来,将节点任务推送给相关人员,并及时反馈相关工作任务和要求。关联查询功能:系统支持全信息的查询和关联功能,当用户需要了解一个项目时,系统能把项目相关信息一并展现给用户。统计/汇总功能:系统通过数据库层汇总分析原始数据,自动形成报表和数据,无需人工参与加工。批量导入导出功能:系统能够实现标准格式文件的批量导入,如任务书、开题报告、中期检查报告、结题报告等,也可根据需求将数据批量导出。

2.3结构设计

根据科研管理的业务范围和管理要素,科研管理信息系统主要包含以下功能模块。信息模块:该模块由科技处基于门户网信息动态、最新通知和学术活动公告。项目管理模块:该模块是系统的关键部分,主要包括课题立项、开题、结题和成果申报管理。由用户通过权限账号进行全过程管理,包括课题研究过程性文件和成果,科技处通过管理员权限进行浏览审核并反馈。成果管理模块:用户登录后,通过该模块对个人成果进行填报和管理,包括论文、著作、获奖等方面的信息。研究生管理模块:该模块属于用户信息管理和课题管理一体化的部分,主要包括用户基本信息、选课明细和课题管理相关内容。研究生通过登录该模块,填报入学基本信息,选课明细,提交课题研究过程中的所有文件。科研条件管理模块:该模块对研究所科技资产进行统计管理。用户管理模块:该系统设置3种用户类型,分别为科技处系统管理员、各科室领导管理员、科研人员,并根据用户角色和单位不同分配不同的权限。另外,系统还通过网站提供日常所需的科研相关文件下载功能。

3系统技术实现

系统采用基于J2EE技术框架的B/S构架,以Eclipse+JBossTools为开发平台,以MicrosoftSQLServer2005为数据库平台,应用Tomcat6.0轻量级服务器,采用JSF、JavaBean、JPA等多种开发技术,在WindowsServer2003或WindowsXP以上操作系统环境运行。科研管理信息系统在开发和完善时需重点考虑以下问题。一是系统的安全性。为确保研究所科研信息的安全,系统通过权限管理为每个用户分配相应的角色,不同的角色使用户使用的系统功能和查看信息的范围得到控制。除系统管理员外,所有用户只可修改自己所添加的数据。此外,系统还提供了操作日志记录功能,用户在系统的所有操作都有所可查,进而保证了用户的操作都是可审计、可追溯的。二是系统的可维护性。系统采用模块化设计,每个功能模块的编程、调试独立进行。三是与现有系统的集成。结合研究所科研人员内部局域网账号,系统开发局域网内部系统的统一认证功能,方便用户注册。

4结语

第8篇

系统采用自顶向下的分层结构化方法进行设计,由系统门户、科研管理、技术管理、知识产权管理、质量管理、“三标一体”管理、信息化管理、三维设计管理、技术装备管理、学协会管理、评奖报优、标准化管理、保密管理、系统管理共计14个功能模块结合而成。考虑到系统的易用性、稳定性、易维护性和技术先进性,本系统基于B/S结构,服务器端采用ASP.net平台进行开发,后端数据库选用SQLServer作为数据库服务器,客户端基于jQuery进行开发,使用jQueryEasyUI搭建系统界面,采用JSON为服务器和客户端的数据交换格式(图1)。

2关键技术

2.1基于jQuery的AJAX异步交互技术

B/S结构相较于C/S结构来说具有易部署、易维护、易扩展、安全性强等优势,但传统的B/S结构在提交数据或更新数据时需要重载整个页面,因而存在数据传输量大、响应不及时等不足。但随着AJAX技术的出现和发展,B/S结构的这一缺点正逐渐消失。AJAX即“AsynchronousJavascriptAndXML”(异步JavaScript和XML),是一种创建交互式网页应用的网页开发技术。AJAX可以使网页通过后台与服务器进行少量数据交换,实现异步更新,即可以在不重新加载整个网页的情况下,对网页局部进行更新,从而减少了数据传输量,提高了页面响应速度。jQuery是一个轻量级、兼容性高、技术先进的JavaScript库,它不仅提供了简单、高效的选择器和事件处理方法,且对AJAX进行了封装,使AJAX使用起来更加便捷,从而在提升客户体验的同时,大幅提升了系统开发效率。下面的代码是jQuery的AJAX异步请求基本用法,在无刷新的情况下通过后台实现了用户登录验证。

2.2基于JSON的数据交换格式

JSON(JavaScriptObjectNotation)是一种轻量级的数据交换格式,是JavaScript的一个子集。因使用了类似于C语言家族(包括C,C++,C#,Java,JavaScript,Perl,Python等)的习惯,使其成为理想的数据交换语言,易于人阅读和编写,同时也易于机器解析和生成,其可读性和可扩展性与XML不分上下,但携带相同信息的字符量却低于XML。采用AJAX异步请求技术之后,浏览器与客户端之间的数据传输量已有大幅下降,数据交换格式采用JSON后,数据传输量将进一步下降。ASP.net服务器端序列化和反序列化JSON有多种方法,本系统使用了第三方提供的Json.NET库,在使用前需先下载并引用“Newtonsoft.Json.dll”。下面的代码是将泛型列表转换为JSON数据格式的过程,服务器端响应客户端请求返回了一组科研项目列表信息。服务器端返回的JSON序列如下:客户端在处理JSON数据时,不必进行处理或特殊转换,可直接将JSON数据当做JavaScript对象进行操作。

3结束语