首页 优秀范文 金属材料论文

金属材料论文赏析八篇

时间:2022-03-07 01:34:36

金属材料论文

金属材料论文第1篇

40多年以前,科学家们就认识到实际材料中的无序结构是不容忽视的。许多新发现的物理效应,诸如某些相转变、量子尺寸效应和有关的传输现象等,只出现在含有缺陷的有序固体中。事实上,如果多晶体中晶体区的特征尺度(晶粒或晶畴直径或薄膜厚度)达到某种特征长度时(如电子波长、平均自由程、共格长度、相关长度等),材料的性能将不仅依赖于晶格原子的交互作用,也受其维数、尺度的减小和高密度缺陷控制。有鉴于此,HGleitCr认为,如果能够合成出晶粒尺寸在纳米量级的多晶体,即主要由非共格界面构成的材料[例如,由50%(invol.)的非共植晶界和50%(invol.)的晶体构成],其结构将与普通多晶体(晶粒大于lmm)或玻璃(有序度小于2nm)明显不同,称之为"纳米晶体材料"(nanocrystallinematerials)。后来,人们又将晶体区域或其它特征长度在纳米量级范围(小于100nn)的材料广义定义为"纳米材料"或"纳米结构材料"(nanostructuredmaterials)。由于其独特的微结构和奇异性能,纳米材料引起了科学界的极大关注,成为世界范围内的研究热点,其领域涉及物理、化学、生物、微电子等诸多学科。目前,广义的纳米材料的主要?ǎ?BR>l)清洁或涂层表面的金属、半导体或聚合物薄膜;2)人造超晶格和量子讲结构;功半结晶聚合物和聚合物混和物;4)纳米晶体和纳米玻璃材料;5)金属键、共价键或分子组元构成的纳米复合材料。

经过最近十多年的研究与探索,现已在纳米材料制备方法、结构表征、物理和化学性能、实用化等方面取得显著进展,研究成果日新月异,研究范围不断拓宽。本文主要从材料科学与工程的角度,介绍与评述纳米金属材料的某些研究进展。

2纳米材料的制备与合成

材料的纳米结构化可以通过多种制备途径来实现。这些方法可大致归类为"两步过程"和"一步过程"。"两步过程"是将预先制备的孤立纳米颗粒因结成块体材料。制备纳米颗粒的方法包括物理气相沉积(PVD)、化学气相沉积(CVD)、微波等离子体、低压火焰燃烧、电化学沉积、溶胶一凝胶过程、溶液的热分解和沉淀等,其中,PVD法以"惰性气体冷凝法"最具代表性。"一步过程"则是将外部能量引入或作用于母体材料,使其产生相或结构转变,直接制备出块体纳米材料。诸如,非晶材料晶化、快速凝固、高能机械球磨、严重塑性形变、滑动磨损、高能粒子辐照和火花蚀刻等。目前,关于制备科学的研究主要集中于两个方面:l)纳米粉末制备技术、理论机制和模型。目的是改进纳米材料的品质和产量;2)纳米粉末的固结技术。以获得密度和微结构可控的块体材料或表面覆层。

3纳米材料的奇异性能

1)原子的扩散行为

原子扩散行为影响材料的许多性能,诸如蠕变、超塑性、电性能和烧结性等。纳米晶Co的自扩散系数比Cu的体扩散系数大14~16个量级,比Cu的晶界自扩散系数大3个量级。Wurshum等最近的工作表明:Fe在纳米晶N中的扩散系数远低于早期报道的结果。纳米晶Pd的界面扩散数据类似于普通的晶界扩散,这很可能是由于纳米粒子固结成的块状试样中的残留疏松的影响。他们还报道了Fe在非晶FeSiBNbCu(Finemete)晶化形成的复相纳米合金(由Fe3Si纳米金属间化合物和晶间的非晶相构成)中的扩散要比在非晶合金中快10~14倍,这是由于存在过剩的热平衡空位。Fe在Fe-Si纳米晶中的扩散由空位调节控制。

2)力学性能

目前,关于纳米材料的力学性能研究,包括硬度、断裂韧性、压缩和拉伸的应力一应变行为、应变速率敏感性、疲劳和蠕变等已经相当广泛。所研究的材料涉及不同方法制备的纯金属、合金、金属间化合物、复合材料和陶瓷。研究纳米材料本征力学性能的关键是获得内部没有(或很少)孔隙、杂质或裂纹的块状试样。由于试样内有各种缺陷,早期的许多研究结果已被最近取得的结果所否定。样品制备技术的日臻成熟与发展,使人们对纳米材料本征力学性能的认识不断深入。

许多纳米纯金属的室温硬度比相应的粗晶高2~7倍。随着晶粒的减小,硬度增加的现象几乎是不同方法制备的样品的一致表现。早期的研究认为,纳米金属的弹性模量明显低于相应的粗晶材料。例如,纳米晶Pd的杨氏和剪切模量大约是相应全密度粗晶的70%。然而,最近的研究发现,这完全是样品中的缺陷造成的,纳米晶Pd和Cu的弹性常数与相应粗晶大致相同,屈服强度是退火粗晶的10~15倍。晶粒小子50nm的Cu韧性很低,总延伸率仅1%~4%,晶粒尺寸为110nm的Cu延伸率大于8%。从粗晶到15urn,Cu的硬度测量值满足HallPetch关系;小于15nm后,硬度随晶粒尺寸的变化趋于平缓,虽然硬度值很高,但仍比由粗晶数据技HallPetch关系外推或由硬度值转换的估计值低很多。不过,纳米晶Cu的压缩屈服强度与由粗晶数据的HallPetCh关系外推值和测量硬度的值(Hv/3)非常吻合,高密度纳米晶Cu牙DPd的压缩屈服强度可达到1GPa量级。

尽管按照常规力学性能与晶粒尺寸关系外推,纳米材料应该既具有高强度,又有较高韧性。但迄今为止,得到的纳米金属材料的韧性都很低。晶粒小于25nm时,其断裂应变仅为<5%,远低于相应粗晶材料。主要原因是纳米晶体材料中存在各类缺陷、微观应力及界面状态等。用适当工艺制备的无缺陷、无微观应力的纳米晶体Cu,其拉伸应变量可高达30%,说明纳米金属材料的韧性可以大幅度提高。纳米材料的塑性变形机理研究有待深入。

纳米晶金属间化合物的硬度测试值表明,随着晶粒的减小,在初始阶段(类似于纯金属盼情况)发生硬化,进一步减小晶粒,硬化的斜率减缓或者发生软化。由硬化转变为软化的行为是相当复杂的,但这些现象与样品的制备方法无关。材料的热处理和晶粒尺寸的变化可能导致微观结构和成份的变化,如晶界、致密性、相变、应力等,都可能影响晶粒尺寸与硬度的关系。

研究纳米晶金属间化合物的主要动机是探索改进金属间化合物的室温韧性的可能性。Bohn等首先提出纳米晶金属化合物几种潜在的优越性。其中包括提高强度和韧性。Haubold及合作者研究了IGC法制备的NiAl的力学性能,但仅限于单一样品在不同温度退火后的硬度测量。Smith通过球磨NiAl得到晶粒尺寸从微米级至纳米级的样品,进行了"微型盘弯曲试验",观察到含碳量低的材料略表现出韧性,而含碳多的材料没有韧性。最近Choudry等用"双向盘弯曲试验"研究了纳米晶NiAl,发现晶粒小于10nm时,屈服强度高干粗晶NiAl,且在室温下有韧性,对形变的贡献主要源于由扩散控制的晶界滑移。室温压缩实验显示由球磨粉末固结成的纳米晶Fe-28Al-2Cr具有良好的塑性(真应变大于1.4),且屈服强度高(是粗晶的1O倍)。测量TiAl(平均晶粒尺寸约10nm)的压缩蠕变(高温下测量硬度随着恒载荷加载时间的变化)表明,在起始的快速蠕变之后,第二阶段蠕变非常缓慢,这意味着发生了扩散控制的形变过程。低温时(低于扩散蠕变开始温度),纳米晶的硬度变化很小。观察到的硬度随着温度升高而下降,原因之一是压头载荷使样品进一步致密化,而主要是因为材料流变加快。Mishra等报道,

在750~950°C,10-5~10-3s-1的应?渌俾史段В擅拙i-47.5Al-3Cr(g-TiAl)合金的形变应力指数约为6,说明其形变机制为攀移位错控制。

值得注意的是,最近报道了用分子动力学计算机模拟研究纳米材料的致密化过程和形变。纳米Cu丝的模拟结果表明,高密度晶界对力学行为和塑性变形过程中的晶界迁移有显著影响。纳米晶(3~5nm)Ni在低温高载荷塑性变形的模拟结果显示,其塑性变形机制主是界面的粘滞流动、晶界运动和晶界旋转,不发生开裂和位错发散,这与粗晶材料是截然不同的。

3)纳米晶金属的磁性

早期的研究发现。纳米晶Fe的饱和磁化强度试比普通块材a-Fe约低40%。Wagner等用小角中子散射(SANS)实验证实纳米晶Fe由铁磁性的晶粒和非铁磁性(或弱铁磁性)的界面区域构成,界面区域体积约占一半。纳米晶Fe的磁交互作用不仅限于单个晶粒,而且可以扩展越过界面,使数百个晶粒磁化排列。

Daroezi等证实球磨形成的纳米晶Fe和Ni的饱和磁化强度与晶粒尺寸(50mm~7nm)无关,但纳米晶的饱和磁化曲线形状不同于微米晶材料。随着晶粒减小,矫顽力显著增加。Schaefer等报道,纳米晶Ni中界面原子的磁拒降低至0.34mB/原子(块状Ni为0.6mB/原子),界面组份的居里温度(545K)比块状晶体Ni的(630K)低。最近的研究还发现,制备时残留在纳米晶Ni中的内应力对磁性的影响很大,纳米晶Ni的饱和磁化强度与粗晶Ni基本相同。

Yoshizawa等报道了快淬的FeCuNbSiB非晶在初生晶化后,软磁性能良好,可与被莫合金和最好的Co基调合金相媲美,且饱和磁化强度很高(Bs约为1.3T)。其典型成份为Fe73.5Cu1Nb3Si13.5B9称为"Finemet"。性能最佳的结构为a-Fe(Si)相(12~20nm)镶嵌在剩余的非晶格基体上。软磁性能好的原因之一被认为是铁磁交互作用。单个晶粒的局部磁晶体各向异性被有效地降低。其二是晶化处理后,形成富Si的a-Fe相,他和磁致伸缩系数ls下降到2′10-6。继Finemet之后,90年代初又发展了新一族纳米晶软磁合金Fe-Zr-(Cu)-B-(Si)系列(称为''''Nanoperm")。退火后,这类合金形成的bcc相晶粒尺寸为10~20nm,饱和磁化强度可达1.5~1.7T,磁导率达到48000(lkHz)。铁芯损耗低,例如,Fe86Zr7B6Cu1合金的铁芯损耗为66mW·g-1(在1T,50Hz条件下),比目前做变压器铁芯的Fe78Si9B13非晶合金和bccFe-3.5%Si合金小45%和95%,实用前景非常诱人。

4)催化及贮氢性能

在催化剂材料中,反应的活性位置可以是表面上的团簇原子,或是表面上吸附的另一种物质。这些位置与表面结构、晶格缺陷和晶体的边角密切相关。由于纳米晶材料可以提供大量催化活性位置,因此很适宜作催化材料。事实上,早在术语"纳米材料"出现前几十年,已经出现许多纳米结构的催化材料,典型的如Rh/Al2O3、Pt/C之类金属纳米颗粒弥散在情性物质上的催化剂。已在石油化工、精细化工合成、汽车排气许多场合应用。

Sakas等报道了纳米晶5%(inmass)Li-MgO(平均直径5.2nm,比表面面积750m2·g-1)的催化活性。它对甲烷向高级烃转化的催化效果很好,催化激活温度比普通Li浸渗的MgO至少低200°C,尽管略有烧结发生,纳米材料的平均活性也比普通材料高3.3倍。

Ying及合作者利用惰性气氛冷凝法制成高度非化学当量的CeO2-x纳米晶体,作为CO还原SO2、CO氧化和CH4氧化的反应催化剂表现出很高的活性。活化温度低于超细的化学当量CeO2基材料。例如,选择性还原SO2为S的反应,可在500°C实现100%转换,而由化学沉淀得到的超细CeO2粉末,活化温度高达600°C。掺杂Cu的Cu-CeO2-x纳米复合材料可以使SO2的反应温度降低到420°C。另外,CeO2-x纳米晶在SO2还原反应中没有活性滞后,且具有超常的抗CO2毒化能力。还能使CO完全转化为CO2的氧化反应在低于100°C时进行,这对冷起动的汽车排气控制非常有利。值得注意的是这样的催化剂仅由较便宜的金属构成,毋须添加资金属元素。

FeTi和Mg2Ni是贮氢材料的重要候选合金。其缺点是吸氢很慢,必须进行活化处理,即多次地进行吸氢----脱氢过程。Zaluski等最近报道,用球磨Mg和Ni粉末可直接形成化学当量的Mg2Ni,晶粒平均尺寸为20~30nm,吸氢性能比普通多晶材料好得多。普通多晶Mg2Ni的吸氢只能在高温下进行(如果氢压力小于20Pa,温度必须高于250°C),低温吸氢则需要长时间和高的氢压力,例如200°C、120bar(lbar=0.1Mpa),2天。纳米晶Mg2Ni在200°C以下,即可吸氢,毋须活化处理。300°C第一次氢化循环后,含氢可达~3.4%(inmass)。在以后的循环过程中,吸氢比普通多晶材料快4倍。纳米晶FeTi的吸氢活化性能明显优于普通多晶材料。普通多晶FeTi的活化过程是:在真空中加热到400~450℃,随后在约7Pa的H2中退火、冷却至室温再暴露于压力较高(35~65Pa)的氢中,激活过程需重复几次。而球磨形成的纳米晶FeTi只需在400℃真空中退火0.5h,便足以完成全部的氢吸收循环。纳米晶FeTi合金由纳米晶粒和高度无序的晶界区域(约占材料的20%~30%)构成。

4纳米材料应用示例

目前纳米材料主要用于下列方面:

l)高硬度、耐磨WC-Co纳米复合材料

纳米结构的WC-Co已经用作保护涂层和切削工具。这是因为纳米结构的WC-Co在硬度、耐磨性和韧性等方面明显优于普通的粗晶材料。其中,力学性能提高约一个量级,还可能进一步提高。高能球磨或者化学合成WC-Co纳米合金已经工业化。化学合成包括三个主要步骤:起始溶液的制备与混和;喷雾干燥形成化学性均匀的原粉末;再经流床热化学转化成为纳米晶WC-Co粉末。喷雾干燥和流床转化已经用来批量生产金属碳化物粉末。WC-Co粉末可在真空或氢气氛下液相烧结成块体材料。VC或Cr3C2等碳化物相的掺杂,可以抑制烧结过程中的晶粒长大。

2)纳米结构软磁材料

Finemet族合金已经由日本的HitachiSpecialMetals,德国的VacuumschmelzeGmbH和法国的Imply等公司推向市场,已制造销售许多用途特殊的小型铁芯产品。日本的AlpsElectricCo.一直在开发Nanoperm族合金,该公司与用户合作,不断扩展纳米晶Fe-Zr-B合金的应用领域。

3)电沉积纳米晶Ni

电沉积薄膜具有典型的柱状晶结构,但可以用脉冲电流将其破碎。精心地控制温度、pH值和镀池的成份,电沉积的Ni晶粒尺寸可达10nm。但它在350K时就发生反常的晶粒长大,添加溶质并使其偏析在晶界上,以使之产生溶质拖拽和Zener粒子打轧效应,可实现结构的稳定。例如,添加千分之几的磷、流或金属元素足以使纳米结构稳定至600K。电沉积涂层脉良好的控制晶粒尺寸分布,表现为Hall-Petch强化行为、纯Ni的耐蚀性好。这些性能以及可直接涂履的工艺特点,使管材的内涂覆,尤其是修复核蒸汽发电机非常方便。这种技术已经作为EectrosleeveTM工艺商业化。在这项应用中,微合金化的涂层晶粒尺寸约为100nm,材料的拉伸强度约为锻造Ni的两倍,延伸率为15%。晶间开裂抗力大为改善。

4)Al基纳米复合材料

Al基纳米复合材料以其超高强度(可达到1.6GPa)为人们所关注。其结构特点是在非晶基体上弥散分布着纳米尺度的a-Al粒子,合金元素包括稀土(如Y、Ce)和过渡族金属(如Fe、Ni)。通常必须用快速凝固技术(直接淬火或由初始非晶态通火)获得纳米复合结构。但这只能得到条带或雾化粉末。纳米复合材料的力学行为与晶化后的非晶合金相类似,即室温下超常的高屈服应力和加工软化(导致拉神状态下的塑性不稳定性)。这类纳米材料(或非晶)可以固结成块材。例如,在略低于非晶合金的晶化温度下温挤。加工过程中也可以完全转变为晶体,晶粒尺寸明显大干部份非晶的纳米复合材料。典型的Al基体的晶粒尺寸为100~200nm,镶嵌在基体上的金属间化合物粒子直径约50nm。强度为0.8~1GPa,拉伸韧性得到改善。另外,这种材料具有很好的强度与模量的结合以及疲劳强度。温挤Al基纳米复合材料已经商业化,注册为GigasTM。雾化的粉末可以固结成棒材,并加工成小尺寸高强度部件。类似的固结材料在高温下表现出很好的超塑:在1s-1的高应变速率下,延伸率大于500%。

5结语

金属材料论文第2篇

40多年以前,科学家们就认识到实际材料中的无序结构是不容忽视的。许多新发现的物理效应,诸如某些相转变、量子尺寸效应和有关的传输现象等,只出现在含有缺陷的有序固体中。事实上,如果多晶体中晶体区的特征尺度(晶粒或晶畴直径或薄膜厚度)达到某种特征长度时(如电子波长、平均自由程、共格长度、相关长度等),材料的性能将不仅依赖于晶格原子的交互作用,也受其维数、尺度的减小和高密度缺陷控制。有鉴于此,HGleitCr认为,如果能够合成出晶粒尺寸在纳米量级的多晶体,即主要由非共格界面构成的材料[例如,由50%(invol.)的非共植晶界和50%(invol.)的晶体构成],其结构将与普通多晶体(晶粒大于lmm)或玻璃(有序度小于2nm)明显不同,称之为"纳米晶体材料"(nanocrystallinematerials)。后来,人们又将晶体区域或其它特征长度在纳米量级范围(小于100nn)的材料广义定义为"纳米材料"或"纳米结构材料"(nanostructuredmaterials)。由于其独特的微结构和奇异性能,纳米材料引起了科学界的极大关注,成为世界范围内的研究热点,其领域涉及物理、化学、生物、微电子等诸多学科。目前,广义的纳米材料的主要?ǎ?BR>l)清洁或涂层表面的金属、半导体或聚合物薄膜;2)人造超晶格和量子讲结构;功半结晶聚合物和聚合物混和物;4)纳米晶体和纳米玻璃材料;5)金属键、共价键或分子组元构成的纳米复合材料。

经过最近十多年的研究与探索,现已在纳米材料制备方法、结构表征、物理和化学性能、实用化等方面取得显著进展,研究成果日新月异,研究范围不断拓宽。本文主要从材料科学与工程的角度,介绍与评述纳米金属材料的某些研究进展。

2纳米材料的制备与合成

材料的纳米结构化可以通过多种制备途径来实现。这些方法可大致归类为"两步过程"和"一步过程"。"两步过程"是将预先制备的孤立纳米颗粒因结成块体材料。制备纳米颗粒的方法包括物理气相沉积(PVD)、化学气相沉积(CVD)、微波等离子体、低压火焰燃烧、电化学沉积、溶胶一凝胶过程、溶液的热分解和沉淀等,其中,PVD法以"惰性气体冷凝法"最具代表性。"一步过程"则是将外部能量引入或作用于母体材料,使其产生相或结构转变,直接制备出块体纳米材料。诸如,非晶材料晶化、快速凝固、高能机械球磨、严重塑性形变、滑动磨损、高能粒子辐照和火花蚀刻等。目前,关于制备科学的研究主要集中于两个方面:l)纳米粉末制备技术、理论机制和模型。目的是改进纳米材料的品质和产量;2)纳米粉末的固结技术。以获得密度和微结构可控的块体材料或表面覆层。

3纳米材料的奇异性能

1)原子的扩散行为

原子扩散行为影响材料的许多性能,诸如蠕变、超塑性、电性能和烧结性等。纳米晶Co的自扩散系数比Cu的体扩散系数大14~16个量级,比Cu的晶界自扩散系数大3个量级。Wurshum等最近的工作表明:Fe在纳米晶N中的扩散系数远低于早期报道的结果。纳米晶Pd的界面扩散数据类似于普通的晶界扩散,这很可能是由于纳米粒子固结成的块状试样中的残留疏松的影响。他们还报道了Fe在非晶FeSiBNbCu(Finemete)晶化形成的复相纳米合金(由Fe3Si纳米金属间化合物和晶间的非晶相构成)中的扩散要比在非晶合金中快10~14倍,这是由于存在过剩的热平衡空位。Fe在Fe-Si纳米晶中的扩散由空位调节控制。

2)力学性能

目前,关于纳米材料的力学性能研究,包括硬度、断裂韧性、压缩和拉伸的应力一应变行为、应变速率敏感性、疲劳和蠕变等已经相当广泛。所研究的材料涉及不同方法制备的纯金属、合金、金属间化合物、复合材料和陶瓷。研究纳米材料本征力学性能的关键是获得内部没有(或很少)孔隙、杂质或裂纹的块状试样。由于试样内有各种缺陷,早期的许多研究结果已被最近取得的结果所否定。样品制备技术的日臻成熟与发展,使人们对纳米材料本征力学性能的认识不断深入。

许多纳米纯金属的室温硬度比相应的粗晶高2~7倍。随着晶粒的减小,硬度增加的现象几乎是不同方法制备的样品的一致表现。早期的研究认为,纳米金属的弹性模量明显低于相应的粗晶材料。例如,纳米晶Pd的杨氏和剪切模量大约是相应全密度粗晶的70%。然而,最近的研究发现,这完全是样品中的缺陷造成的,纳米晶Pd和Cu的弹性常数与相应粗晶大致相同,屈服强度是退火粗晶的10~15倍。晶粒小子50nm的Cu韧性很低,总延伸率仅1%~4%,晶粒尺寸为110nm的Cu延伸率大于8%。从粗晶到15urn,Cu的硬度测量值满足HallPetch关系;小于15nm后,硬度随晶粒尺寸的变化趋于平缓,虽然硬度值很高,但仍比由粗晶数据技HallPetch关系外推或由硬度值转换的估计值低很多。不过,纳米晶Cu的压缩屈服强度与由粗晶数据的HallPetCh关系外推值和测量硬度的值(Hv/3)非常吻合,高密度纳米晶Cu牙DPd的压缩屈服强度可达到1GPa量级。

尽管按照常规力学性能与晶粒尺寸关系外推,纳米材料应该既具有高强度,又有较高韧性。但迄今为止,得到的纳米金属材料的韧性都很低。晶粒小于25nm时,其断裂应变仅为<5%,远低于相应粗晶材料。主要原因是纳米晶体材料中存在各类缺陷、微观应力及界面状态等。用适当工艺制备的无缺陷、无微观应力的纳米晶体Cu,其拉伸应变量可高达30%,说明纳米金属材料的韧性可以大幅度提高。纳米材料的塑性变形机理研究有待深入。

纳米晶金属间化合物的硬度测试值表明,随着晶粒的减小,在初始阶段(类似于纯金属盼情况)发生硬化,进一步减小晶粒,硬化的斜率减缓或者发生软化。由硬化转变为软化的行为是相当复杂的,但这些现象与样品的制备方法无关。材料的热处理和晶粒尺寸的变化可能导致微观结构和成份的变化,如晶界、致密性、相变、应力等,都可能影响晶粒尺寸与硬度的关系。

研究纳米晶金属间化合物的主要动机是探索改进金属间化合物的室温韧性的可能性。Bohn等首先提出纳米晶金属化合物几种潜在的优越性。其中包括提高强度和韧性。Haubold及合作者研究了IGC法制备的NiAl的力学性能,但仅限于单一样品在不同温度退火后的硬度测量。Smith通过球磨NiAl得到晶粒尺寸从微米级至纳米级的样品,进行了"微型盘弯曲试验",观察到含碳量低的材料略表现出韧性,而含碳多的材料没有韧性。最近Choudry等用"双向盘弯曲试验"研究了纳米晶NiAl,发现晶粒小于10nm时,屈服强度高干粗晶NiAl,且在室温下有韧性,对形变的贡献主要源于由扩散控制的晶界滑移。室温压缩实验显示由球磨粉末固结成的纳米晶Fe-28Al-2Cr具有良好的塑性(真应变大于1.4),且屈服强度高(是粗晶的1O倍)。测量TiAl(平均晶粒尺寸约10nm)的压缩蠕变(高温下测量硬度随着恒载荷加载时间的变化)表明,在起始的快速蠕变之后,第二阶段蠕变非常缓慢,这意味着发生了扩散控制的形变过程。低温时(低于扩散蠕变开始温度),纳米晶的硬度变化很小。观察到的硬度随着温度升高而下降,原因之一是压头载荷使样品进一步致密化,而主要是因为材料流变加快。Mishra等报道,在750~950°C,10-5~10-3s-1的应?渌俾史段В擅拙i-47.5Al-3Cr(g-TiAl)合金的形变应力指数约为6,说明其形变机制为攀移位错控制。

值得注意的是,最近报道了用分子动力学计算机模拟研究纳米材料的致密化过程和形变。纳米Cu丝的模拟结果表明,高密度晶界对力学行为和塑性变形过程中的晶界迁移有显著影响。纳米晶(3~5nm)Ni在低温高载荷塑性变形的模拟结果显示,其塑性变形机制主是界面的粘滞流动、晶界运动和晶界旋转,不发生开裂和位错发散,这与粗晶材料是截然不同的。

3)纳米晶金属的磁性

早期的研究发现。纳米晶Fe的饱和磁化强度试比普通块材a-Fe约低40%。Wagner等用小角中子散射(SANS)实验证实纳米晶Fe由铁磁性的晶粒和非铁磁性(或弱铁磁性)的界面区域构成,界面区域体积约占一半。纳米晶Fe的磁交互作用不仅限于单个晶粒,而且可以扩展越过界面,使数百个晶粒磁化排列。

Daroezi等证实球磨形成的纳米晶Fe和Ni的饱和磁化强度与晶粒尺寸(50mm~7nm)无关,但纳米晶的饱和磁化曲线形状不同于微米晶材料。随着晶粒减小,矫顽力显著增加。Schaefer等报道,纳米晶Ni中界面原子的磁拒降低至0.34mB/原子(块状Ni为0.6mB/原子),界面组份的居里温度(545K)比块状晶体Ni的(630K)低。最近的研究还发现,制备时残留在纳米晶Ni中的内应力对磁性的影响很大,纳米晶Ni的饱和磁化强度与粗晶Ni基本相同。

Yoshizawa等报道了快淬的FeCuNbSiB非晶在初生晶化后,软磁性能良好,可与被莫合金和最好的Co基调合金相媲美,且饱和磁化强度很高(Bs约为1.3T)。其典型成份为Fe73.5Cu1Nb3Si13.5B9称为"Finemet"。性能最佳的结构为a-Fe(Si)相(12~20nm)镶嵌在剩余的非晶格基体上。软磁性能好的原因之一被认为是铁磁交互作用。单个晶粒的局部磁晶体各向异性被有效地降低。其二是晶化处理后,形成富Si的a-Fe相,他和磁致伸缩系数ls下降到2′10-6。继Finemet之后,90年代初又发展了新一族纳米晶软磁合金Fe-Zr-(Cu)-B-(Si)系列(称为''''Nanoperm")。退火后,这类合金形成的bcc相晶粒尺寸为10~20nm,饱和磁化强度可达1.5~1.7T,磁导率达到48000(lkHz)。铁芯损耗低,例如,Fe86Zr7B6Cu1合金的铁芯损耗为66mW·g-1(在1T,50Hz条件下),比目前做变压器铁芯的Fe78Si9B13非晶合金和bccFe-3.5%Si合金小45%和95%,实用前景非常诱人。

4)催化及贮氢性能

在催化剂材料中,反应的活性位置可以是表面上的团簇原子,或是表面上吸附的另一种物质。这些位置与表面结构、晶格缺陷和晶体的边角密切相关。由于纳米晶材料可以提供大量催化活性位置,因此很适宜作催化材料。事实上,早在术语"纳米材料"出现前几十年,已经出现许多纳米结构的催化材料,典型的如Rh/Al2O3、Pt/C之类金属纳米颗粒弥散在情性物质上的催化剂。已在石油化工、精细化工合成、汽车排气许多场合应用。

Sakas等报道了纳米晶5%(inmass)Li-MgO(平均直径5.2nm,比表面面积750m2·g-1)的催化活性。它对甲烷向高级烃转化的催化效果很好,催化激活温度比普通Li浸渗的MgO至少低200°C,尽管略有烧结发生,纳米材料的平均活性也比普通材料高3.3倍。

Ying及合作者利用惰性气氛冷凝法制成高度非化学当量的CeO2-x纳米晶体,作为CO还原SO2、CO氧化和CH4氧化的反应催化剂表现出很高的活性。活化温度低于超细的化学当量CeO2基材料。例如,选择性还原SO2为S的反应,可在500°C实现100%转换,而由化学沉淀得到的超细CeO2粉末,活化温度高达600°C。掺杂Cu的Cu-CeO2-x纳米复合材料可以使SO2的反应温度降低到420°C。另外,CeO2-x纳米晶在SO2还原反应中没有活性滞后,且具有超常的抗CO2毒化能力。还能使CO完全转化为CO2的氧化反应在低于100°C时进行,这对冷起动的汽车排气控制非常有利。值得注意的是这样的催化剂仅由较便宜的金属构成,毋须添加资金属元素。

FeTi和Mg2Ni是贮氢材料的重要候选合金。其缺点是吸氢很慢,必须进行活化处理,即多次地进行吸氢----脱氢过程。Zaluski等最近报道,用球磨Mg和Ni粉末可直接形成化学当量的Mg2Ni,晶粒平均尺寸为20~30nm,吸氢性能比普通多晶材料好得多。普通多晶Mg2Ni的吸氢只能在高温下进行(如果氢压力小于20Pa,温度必须高于250°C),低温吸氢则需要长时间和高的氢压力,例如200°C、120bar(lbar=0.1Mpa),2天。纳米晶Mg2Ni在200°C以下,即可吸氢,毋须活化处理。300°C第一次氢化循环后,含氢可达~3.4%(inmass)。在以后的循环过程中,吸氢比普通多晶材料快4倍。纳米晶FeTi的吸氢活化性能明显优于普通多晶材料。普通多晶FeTi的活化过程是:在真空中加热到400~450℃,随后在约7Pa的H2中退火、冷却至室温再暴露于压力较高(35~65Pa)的氢中,激活过程需重复几次。而球磨形成的纳米晶FeTi只需在400℃真空中退火0.5h,便足以完成全部的氢吸收循环。纳米晶FeTi合金由纳米晶粒和高度无序的晶界区域(约占材料的20%~30%)构成。

4纳米材料应用示例

目前纳米材料主要用于下列方面:

l)高硬度、耐磨WC-Co纳米复合材料

纳米结构的WC-Co已经用作保护涂层和切削工具。这是因为纳米结构的WC-Co在硬度、耐磨性和韧性等方面明显优于普通的粗晶材料。其中,力学性能提高约一个量级,还可能进一步提高。高能球磨或者化学合成WC-Co纳米合金已经工业化。化学合成包括三个主要步骤:起始溶液的制备与混和;喷雾干燥形成化学性均匀的原粉末;再经流床热化学转化成为纳米晶WC-Co粉末。喷雾干燥和流床转化已经用来批量生产金属碳化物粉末。WC-Co粉末可在真空或氢气氛下液相烧结成块体材料。VC或Cr3C2等碳化物相的掺杂,可以抑制烧结过程中的晶粒长大。

2)纳米结构软磁材料

Finemet族合金已经由日本的HitachiSpecialMetals,德国的VacuumschmelzeGmbH和法国的Imply等公司推向市场,已制造销售许多用途特殊的小型铁芯产品。日本的AlpsElectricCo.一直在开发Nanoperm族合金,该公司与用户合作,不断扩展纳米晶Fe-Zr-B合金的应用领域。

3)电沉积纳米晶Ni

电沉积薄膜具有典型的柱状晶结构,但可以用脉冲电流将其破碎。精心地控制温度、pH值和镀池的成份,电沉积的Ni晶粒尺寸可达10nm。但它在350K时就发生反常的晶粒长大,添加溶质并使其偏析在晶界上,以使之产生溶质拖拽和Zener粒子打轧效应,可实现结构的稳定。例如,添加千分之几的磷、流或金属元素足以使纳米结构稳定至600K。电沉积涂层脉良好的控制晶粒尺寸分布,表现为Hall-Petch强化行为、纯Ni的耐蚀性好。这些性能以及可直接涂履的工艺特点,使管材的内涂覆,尤其是修复核蒸汽发电机非常方便。这种技术已经作为EectrosleeveTM工艺商业化。在这项应用中,微合金化的涂层晶粒尺寸约为100nm,材料的拉伸强度约为锻造Ni的两倍,延伸率为15%。晶间开裂抗力大为改善。

4)Al基纳米复合材料

Al基纳米复合材料以其超高强度(可达到1.6GPa)为人们所关注。其结构特点是在非晶基体上弥散分布着纳米尺度的a-Al粒子,合金元素包括稀土(如Y、Ce)和过渡族金属(如Fe、Ni)。通常必须用快速凝固技术(直接淬火或由初始非晶态通火)获得纳米复合结构。但这只能得到条带或雾化粉末。纳米复合材料的力学行为与晶化后的非晶合金相类似,即室温下超常的高屈服应力和加工软化(导致拉神状态下的塑性不稳定性)。这类纳米材料(或非晶)可以固结成块材。例如,在略低于非晶合金的晶化温度下温挤。加工过程中也可以完全转变为晶体,晶粒尺寸明显大干部份非晶的纳米复合材料。典型的Al基体的晶粒尺寸为100~200nm,镶嵌在基体上的金属间化合物粒子直径约50nm。强度为0.8~1GPa,拉伸韧性得到改善。另外,这种材料具有很好的强度与模量的结合以及疲劳强度。温挤Al基纳米复合材料已经商业化,注册为GigasTM。雾化的粉末可以固结成棒材,并加工成小尺寸高强度部件。类似的固结材料在高温下表现出很好的超塑:在1s-1的高应变速率下,延伸率大于500%。

5结语

在过去十多年里,尽管纳米材料的研究已经取得了显著进展,但许多重要问题仍有待探索和解决。诸如,如何获得清洁、无孔隙、大尺寸的块体纳米材料,以真实地反映纳米材料的本征结构与性能?如何开发新的制备技术与工艺,实现高品质、低成本、多品种的纳米材料产业化?纳米材料的奇异性能是如何依赖于微观结构(晶粒尺寸与形貌、晶界等缺陷的性质、合金化等)的?反之,如何利用微观结构的设计与控制,发展具有新颖性能的纳米材料,以拓宽纳米材料的应用领域?某些传统材料的局域纳米化能否为其注入新的生命力?如何实现纳米材料的功能与结构一体化?如何使纳米材料在必要的后续处理或使用过程中保持结构与性能的稳定性?等等。这些基本问题是进一步深入研究纳米材料及其实用化的关键,也是纳米材料研究被称为"高风险与高回报并存"的原因。

金属材料论文第3篇

纯金属锌及其氧化物和不同纳米Au修饰量的金属锌及其氧化物的紫外可见光谱。可以看出,波长为368nm处出现一个比较强的金属锌及其氧化物吸收峰。在525nm处出现较宽的纳米Au的吸收峰[4]。纳米Au的吸收峰随Au含量的变大而不断变强,还伴随显著的红移现象[5]。可能是因为Au和金属锌及其氧化物之间的相互作用,致使纳米Au的吸收峰产生了显著的红移现象,可能给金属锌及其氧化物材料的气敏特性有重要作用。图2是纯金属锌及其氧化物和不同纳米Au修饰量的金属锌及其氧化物的XRD谱图。可以看出,谱线中存在很明显的六方相特征衍射峰,和金属锌及其氧化物的晶面吻合[6]。另外,加入纳米Au修饰量的金属锌及其氧化物谱线出现新的衍射峰,其峰位与立方相Au的晶面一一对应。纳米Au修饰量的衍射峰随着Au含量的变大而不断的变强。图3是纯金属锌及其氧化物和纳米Au修饰量在为10%时的金属锌及其氧化物的SEM形貌。可以看出,金属锌及其氧化物是由大量向外辐射分布的六棱锥纳米分枝构成的复杂的花型结构。金属锌及其氧化物的六棱锥分枝的表面比较光滑。金属锌及其氧化物的表面上均匀的分布着纳米Au粒子,金属锌及其氧化物的六棱锥分枝的表面出现了粗化的现象。这种粗化现象会导致表面缺陷的增加,对金属锌及其氧化物材料气敏特性有积极作用。

2金属锌及其氧化物的气敏特性

图4是纯金属锌及其氧化物和不同纳米Au修饰量的金属锌及其氧化物气敏元件,在不同温度下对100μg/g丙酮的灵敏度图线。可以看出,纳米Au粒子可以有效地提高金属锌及其氧化物材料的灵敏氧化物对丙酮的选择性非常好,可以满足实际的丙酮气体检测要求。另外,材料各种气体的响应程度随气体浓度的增加基本呈线性逐渐变大。

图5为金属锌及其氧化物对不同气体的响应恢复动态曲线和灵敏度。可以看出,材料对还原性气体的灵敏度较高。另外,材料对丙酮的灵敏度比氢气、甲醛、苯和乙醇高得多,这说明Au修饰后金属锌及其氧化物对丙酮的选择性非常好,可以满足实际的丙酮气体检测要求。另外,材料各种气体的响应程度随气体浓度的增加基本呈线性逐渐变大。

3结论

金属材料论文第4篇

金属的毒性机制或致病机理通常为下列机制中的一种,如切断生物大分子表现活性必需的功能基;置换人体生物大分子所需金属离子;改变人体生物分子构成或结构。金属离子往往依靠改变一些生物大分子如蛋白质、核酸和生物膜的构成或结构而造成损伤。医用金属材料中合金元素产生的金属离子多具有强负电性,易与人体体液内的有机物或无机物质结合形成复杂的有机或无机化合物,其中的一些化合物具有强的毒性,所以一般来说,金属离子在人体内的允许浓度非常低。金属离子进入体液后会引发许多生物反应,如血液反应和组织反应等。由于人体血液中血小板、血细胞和蛋白质等带负电性,因此大量负电性金属离子的溶出易于引发血栓症状。金属离子在人体内部分组织或体液内的富集会加重其毒性反应。通常Ni离子易富集于血液、滑液和关节囊中,Al、V、Cr和Co在尿液、血液、滑液和关节囊内的浓度都会增加。在人体组织肺内Cr、Al和V离子浓度易于增加,在肾、心脏、肝脏和脾脏内Co和Al易于集聚[7]。在人体内的金属盐细胞毒性的强弱按照Co>V>Ni>Cr>Ti>Fe的顺序降低,体外实验结果表明Co、Ni和Cr还有致敏反应和致癌倾向。

超量的Ni离子具有细胞毒性,会导致局部组织刺激反应或组织坏死,甚至会导致呼吸功能障碍和过敏反应,Ni离子也会抑制细胞增殖,存在潜在致癌性。Ni的致病机理仍然存在争论。研究表明,在人体内二价镍离子利用Mg2+离子传输系统透过细胞膜。二价镍离子进入细胞后,与细胞质的配合基结合,不会在细胞核内聚集,因此不会引起癌变。但是镍的化合物可能致癌。镍的化合物表面电荷为负,溶解性低,更容易被内吞。当镍化合物颗粒被靶细胞内吞时,在细胞内发生反应,二价镍离子被释放,与DNA分子结合,结合的DNA分子若不能正确修复,将致DNA断裂或突变,从而间接引起致癌。镍离子会减弱DNA、RNA等酶的活性,减少DNA复制。镍离子通过降低DNA合成,改变DNA结构,抑制DNA的转录和复制,引起DNA和蛋白质交联以及DNA单链断裂,导致DNA损伤和细胞毒作用[21]。镍在一些生物化学反应中具有较高的活性,比如氢化和脱氢反应。并且在一些氧化反应中起到催化剂作用。当金属(Fe、Co、Ni、Cr、Mo、W和Re)和一氧碳化物反应时,形成羟基金属化合物,以液体、固体或复合化合物形式存在。其中Ni(CO)6和Cr(CO)6化合物不稳定,这些离子对生物体有害。Ni(CO)6在常压下即可形成,在人体温度加速发生放热反应,释放镍离子。Ni(CO)6的有害作用与其抑制血红蛋白与氧的结合能力有关,引起体内缺氧反应。Ni(CO)6分解形成的氯化物也具有毒性。

Al和V都是常用医用钛合金Ti6Al4V中的有害元素。在生物体内长期植入的Ti6Al4V合金会释放出Al和V离子,对人体产生毒害作用。Al元素在人体内形成的盐达到一定浓度后会导致人体器官损伤,此外Al元素会引起骨软化、贫血和神经紊乱。铝元素与无机磷结合,会致使磷缺失,会诱发老年痴呆症等。人体内铝元素的毒性和其与体内的生物配体反应有关[25]。有毒的三价铝离子取代人体重要酶及二价镁离子从而影响细胞机能。三价铝离子通过影响神经细胞内钙离子的浓度将引起细胞功能紊乱,细胞内钙离子浓度升高时这种现象更明显。三价铝离子进入细胞内将与亲和力高的钙调蛋白结合,导致其无法调控钙离子浓度,从而造成钙离子浓度升高、细胞机能改变甚至坏死。铝元素的神经毒性机理与铝离子与染色质中的DNA结合有一定的关系,通过改变基因传递信号影响细胞活性,引起神经元纤维异常蛋白质合成,从而造成神经元的病理改变。钒元素在人体内易于形成钒酸盐(VO3-,V5+)和钒氧阳离子(VO2+,V4+),它们进入细胞后被还原物质还原,并同磷酸盐、蛋白质、乳酸和柠檬酸等配位体结合。适量钒酸盐和钒氧阳离子对生物体的机能起有益作用,当其超量聚集时会对生物体产生毒性。钒酸盐和钒氧阳离子在人体内累积于肝肾、骨、脾等器官,其毒性作用与磷酸盐的代谢有关,通过影响钾、钠、氢和钙离子的ATP酶发生作用,其毒性可能超过铬和镍,引起致癌。钒酸盐和钒氧阳离子还与躁狂郁抑症有一定关系[30,31]。人体红细胞内的钾钠和ATP酶的活性与钒酸盐的浓度成反向关系,当浓度上升时,钠泵活性下降。躁狂郁抑症患者的遗传缺陷与细胞不能产生新的钠泵(Na+,K+—ATP酶)有关,引起钠和钾进出细胞失调,使人体内细胞钠浓度增高,造成代谢紊乱。三价到六价铬离子等活性中间体在氧化应激反应和氧化组织损坏情况下会引起细胞毒性、基因毒性和致癌性。当六价铬和镍离子达到一定剂量时,会干扰体内正常氧化还原反应,进而破坏细胞传递信号和基因表述。钴的致癌性在于其抑制了DNA的修复,而二价钴的毒性大于三价钴的毒性[7]。

2防护涂层研究

大量的医学基础研究结果表明,NiTi合金在各种生理条件下未发现人体排异性反应和炎症,满足人体植入物生物学医用材料评价标准(QNB0030-1998)的要求,即无致敏、无细胞毒性和无致癌性,溶血性为0.13%。但是考虑到医用金属材料在长期使用过程中的安全性及可靠性,研究人员仍对Ni离子溶出可能造成的潜在风险持谨慎态度。金属材料的耐蚀性及其合金元素的毒性是影响其生物相容性的关键因素[32]。为了提高医用金属材料的耐蚀性能,抑制有害离子的溶出,对现有金属材料进行表面改性已经成为必要手段。例如,在与生物体组织接触1000h的条件下测量镍钛合金支架释放的Ni离子的含量,机械抛光镍钛合金的Ni/Ti离子含量比为0.18,而电化学抛光合金的约为0.04。这个结果说明电解抛光大幅度降低了NiTi合金的Ni离子释放。目前,多种具有优异生物相容性或功能性涂层已被用于生物金属材料的表面处理,如金属(Au、Pt、Pd、Ta、Mo)涂层、弹性高分子聚合物涂层、各种氮、氧化物涂层、羟基磷灰石(Ca10(PO4)6(OH)2,HA)生物陶瓷涂层和固载骨形成蛋白(BMP),达到了改善耐腐蚀性能,提高生物相容性和降低有害离子溶出的目的。生物涂层的制备方法种类很多。等离子喷涂多用于口腔、关节种植体的表面处理。可以喷涂的基体包括纯钛、钛合金及不锈钢等,涂层材料有羟基磷灰石(HA),α或β-磷酸三钙、磷酸四钙及三氧化二铝等。

目前的研究重点集中在新型涂层材料、涂层与基体之间的过渡材料、喷涂工艺及涂层与诱导性生物质的复合等。在种植体表面烧结的多孔结构有利于成纤维细胞形成紧密的附着及定向生长。离子束辅助沉积法克服了等离子喷涂时涂层与基体间附着力较差的缺点。Ektessabi采用离子束辅助沉积薄膜方法在钛合金表面成功地制备了附着力高的羟基磷灰石薄膜[39]。但该项技术在生物医学领域的应用还不成熟,有待于进一步开发应用。化学热处理法是一种新型的表面改性技术,可以在钛合金表面形成微米级和纳米级结构形貌,获得特殊的表面物理和化学特性。该方法是一种热化学工艺,包括酸蚀刻和控制氧化处理,处理后表面无裂纹、与基体结合强度高。表面形成的多尺度的微观结构和表面羟基化化学特性有利于细胞的附着、增殖和分化。通过酸蚀刻先破坏原有的氧化层结构,重新再氧化形成纳米尺度和微米尺寸的表面结构。其结构与二氧化钛涂层结构有明显不同。植入物经HF+H2O2处理后在模拟体液沉浸一周后评估Ti6Al4V表面离子释放水平,发现钒离子和铝离子释放水平明显降低。钛及钛合金通过表面形成薄的氧化物层抑制离子释放和反应,表面形成惰性层提高了生物相容性。另一方面,表面惰性导致纤维组织层的形成,抑制了骨整合。离子注入法应用较多的是Ca、Na、P、F离子注入和Ca-P联合注入。Ca离子注入在植入物表面形成磷酸钙的沉淀物,促进新骨的形成。P离子注入在植入物表面形成TiP涂层,提高了基体的耐蚀性,抑制了基体有害离子的释放。

溶胶凝胶法可以使植入物在溶液中沉积薄膜时达到分子水平的均匀混合,有益于提高基体与涂层的结合强度。这种方法可以对形状复杂的植入物件沉积薄膜,并控制沉积膜的组成、厚度及形态。采用这种方法制造的薄膜包括TiO2、CaP和TiO2-CaP以及SiO2基薄膜。采用这种方法在NiTi合金表面制备了TiO2-SiO2薄膜,提高了基体的耐蚀性和血液等生物相容性,与基体有较高的结合力。在钛合金表面制成的TiO2/HA涂层显著促进成骨细胞的生长。利用等离子体电解氧化技术(PEO)又称微弧氧化技术(MAO),可以在生物材料表面形成以金红石型和锐钛矿型TiO2为主的涂层,制备HA相或CaTiO3相涂层。含有HA相的磷酸钙涂层的弹性模量(30GPa)和人体骨弹性模量(20GPa)接近,可有效抑制应力遮挡造成的危害,同时,由于具有和人体骨接近的化学成分组成(包括Ca、P浓度和Ca/P比例)和较高的结合强度和密度,使该涂层能抑制生物材料内有害离子的释放。MAO技术使人工假体表面具备了生物活性和多孔性,结合骨形态发生蛋白(BMP)的复合,促进了新骨形成。

3结语

金属材料论文第5篇

博士后的论文上了《科学》杂志

浙江科学界有个好消息,浙江大学材料科学与工程学系新结构材料国际研究中心蒋建中课题组关于金属玻璃的最新研究成果,登上了6月17日美国《Science》(科学)杂志。这篇名为《Long-range topological order in metallic glass》(金属玻璃的长程拓扑序)的论文,第一作者是浙大材料系新结构材料国际研究中心曾桥石博士后。

比金属强度更高、更耐腐蚀

金属玻璃做的手机外壳永葆光亮容颜,它做的高尔夫球杆,能把球送到更远的地方,它还能被轻易地塑造成造型精巧的微小器件!

金属玻璃的得名,来自其金属元素的构成,以及内部的原子又像玻璃一样无序排列。这种外柔内刚的合金材料,是近几十年来材料科学领域的“新贵”。上世纪60年代,美国加州理工大学的Duwez教授第一次在实验室制备出这种新型材料。金属玻璃具有比金属强度更高(目前世界上强度最高的金属材料就是金属玻璃)、更耐腐蚀、更耐磨的优良性能,还有很高的弹性极限。

金属玻璃首饰是顶级奢侈品

目前能见到金属玻璃踪影的,多在航天、军工等高端行业。比如,金属玻璃的穿透能力非常强悍,常被用在坦克的穿甲弹上。

不过,别以为金属玻璃只和这些阳刚行当搭边,如果这种材料能普及开来,女性朋友一定会惊喜万分!因为,金属玻璃是首饰的最佳制作材料,比起金银等材料的首饰,金属玻璃做成的物件更加光亮、耐磨,不会留下划痕,能够永葆光鲜!当然,限于金属玻璃的生产成本,现在的金属玻璃首饰、手表,都是顶级奢侈品。

本论文的第一作者曾桥石说,如果金属玻璃的生产成本大大降低,那么将来手机的外壳、手表的材料等等日常用品,都会使用这种高强度、防辐射、耐磨损的无敌材料。“说是无敌,一点都不夸张,从材料的性能推测,我们有理由大胆想象,金属玻璃将带来一场材料革命,金属玻璃将可以替代目前人类所使用的所有金属材料!”

《科学》:将在科学界产生广泛影响

1995年,凝聚态物理奠基人、诺贝尔奖获得者P.W. Anderson就曾在《Science》杂志上说:“有关对无序玻璃态认识的问题,是目前凝聚态物理最重要也是最困难的问题之一。”这句话,被曾桥石打印出来贴在实验室里。

曾桥石说,从前对于金属玻璃的结构认识太少,导致在制造材料的过程中基本凭经验摸索,进展相对缓慢。近些年来,由于计算机模拟和各种先进同步辐射X射线技术的应用,帮助科研人员在实验室里有了进一步的发现。

“这一次,我们揭示了金属玻璃中可以存在长程拓扑有序,改变了我们对玻璃结构的传统理解和认识,而且为玻璃结构的研究,提供了一个全新的思路。”曾桥石介绍说,实验采用天然材料中最硬的金刚石,在实验室里对头发丝大小的一块金属玻璃样品进行“挤压”,因为受力面积小,压强可以达到25万个大气压,然后再在电子显微镜下观察它的原子排列。

金属材料论文第6篇

关键词:无机非金属材料;专业选修课;教学方法

作者简介:张露露(1975-),女,湖南邵阳人,三峡大学机械与材料学院,副教授;杨学林(1973-),男,湖北均县人,三峡大学机械与材料学院,副教授。(湖北 宜昌 443002)

中图分类号:G642.0 文献标识码:A 文章编号:1007-0079(2013)20-0080-02

无机非金属材料是与金属材料、有机高分子材料并列的三大材料之一,是国民经济的重要基础,也是航空、航天、交通、能源和电子等高技术领域的重要支撑。目前,它正朝着多元化、复合化、功能化、结构—功能一体化方向发展。按照教育部“拓宽基础,淡化专业意识,扩大专业口径,培养复合型人才”的要求,结合三峡大学“高素质、强能力、应用型”的人才培养目标,金属材料工程专业开设了“无机非金属材料”课程作为专业选修课,这对于拓展学生专业知识、增强学生就业竞争力有着重要意义。

“无机非金属材料”课程主要介绍无机非金属材料的组成、结构和性能之间的关系,介绍陶瓷、玻璃、水泥、耐火材料的制备工艺、组织结构特征、性能特点及其应用,以及无机非金属基复合材料和功能无机非金属材料等研究现状及其发展方向。该课程基础性、系统性和实用性较强。它作为金属材料工程专业的专业选修课,在教学内容和教学要求上不同于其作为无机非金属材料工程专业的专业必修课。金属材料工程专业开设“无机非金属材料”课程作为选修课的目的是让学生在完成金属材料工程专业必修课程的基础上,初步了解和认识无机非金属材料的基本理论知识、成型加工方法及其应用领域,掌握相应的基本知识、基本技能及必要的理论基础,深化学生的专业基础知识,拓展学科知识面。由于课程内容丰富,涉及化学、物理、材料学等多学科的专业知识,又紧跟材料科学发展的前沿,要让学生在有限的课时内理解并掌握其内容具有一定难度,因此,这对教学提出了较高要求。本文主要结合笔者近几年的教学实践和经验,就如何从教学内容、教学模式、教学方法和手段以及考核方式等方面进行改革和创新进行了探讨,以期更好地提高教学质量、增强教学效果。

一、优选教学资源,优化教学内容

目前,无机非金属材料方面的教材很多,如戴金辉等主编的《无机非金属材料概论》、卢安贤主编的《无机非金属材料导论》、陈照峰等主编的《无机非金属材料学》、王培铭主编的《无机非金属材料学》等,这些教材侧重点各不相同。根据该课程的选修课性质,按照专业知识面广、难易程度适中、实用性强的原则,三峡大学选用了戴金辉等主编的《无机非金属材料概论》作为该门课程的主要教材。该教材主要介绍陶瓷、玻璃、水泥和耐火材料的结构、性能以及制备工艺,并扼要地介绍这几种材料的最新发展动态,[1]它吸取了国内外同类教材的精华,内容深广度适中,叙述深入浅出,适用性强,较适合作为三峡大学金属材料工程专业的选修课教材。同时,为帮助学生进一步加深对无机非金属材料的认识和了解,学校还指定了卢安贤编写的《无机非金属材料导论》作为辅助教材。为完善教学内容,还将陈照峰等主编的《无机非金属材料学》、王培铭主编的《无机非金属材料学》等教材作为教学参考书。

鉴于专业选修课教学内容弹性较大,在课堂教学中笔者注重学科知识的拓展和深化以及知识的更新,除讲授教材内容外,还有意识地结合社会生活中的热点问题、当前科技发展动态、学校无机非金属材料方面的科研成果以及自身的科研工作进行讲解和介绍,不断充实和优化教学内容。例如,在讲授陶瓷、玻璃、水泥和耐火材料四种传统无机非金属材料时,笔者一般首先介绍该材料的发展历史和现状,以增加学生对该材料的初步认识和了解,然后讲授书本上的相关理论知识;又如,在讲授无机非金属基复合材料时,笔者介绍了目前比较热门的新能源材料,并谈及了一些自己在锂离子电池材料方面的科研工作情况。这些相关教学内容的补充不仅提高了学生对该课程的学习兴趣,也激发了学生的科研兴趣和创新意识,达到了较好的教学效果。

二、改革教学模式,创新教学方法

专业选修课的特点决定了它的教学不同于必修课,它不仅强调知识的系统性和完整性,强调学习方法、科研方法的引导,而且更需要激发学生的学习兴趣。针对“无机非金属材料”课程的专业选修课性质及其理论性强、内容枯燥、学生全面掌握知识点难度较大等特点,笔者坚持“以教师为主导,以学生为主体”的教学原则,采用了多媒体教学与传统教学相结合的教学模式,运用了案例教学、课堂讨论、学生自主学习、任务趋动等灵活多变的教学方法和手段,以提高教学质量,增强教学效果。

1.采用多媒体教学与传统教学相结合的教学模式

多媒体作为一种现代化教学手段,被广泛引入各高校的教学当中。它集图、文、声、动画于一体,能将抽象的概念直观化、具体化,将枯燥的内容生动化,并容纳较大信息量,使课堂教学变得生动、活泼、富有新意,教学效率高,效果明显。[2]而传统的教学方式,教师可以通过在讲台上的“表演”吸引学生的注意力,有利于实现师生间的互动。“无机非金属材料学”课程涉及知识面广、理论性强、内容枯燥,为尽可能调动学生的学习兴趣,帮助学生更好地理解和记忆,笔者针对各部分教学内容进行精心构思,采用了多媒体教学与传统教学相结合的教学模式。在教学过程中,笔者一方面制作了图文并茂的相应课件,另一方面也注重传统教学方式中教态和教学语言的运用。通过教师亲切生动的讲授和大量课件的展示,增加了学生对无机非金属材料的感性认识,加深了学生对理论知识的理解和记忆,取得了较好的教学效果。

2.注重案例教学,坚持理论联系实际

“无机非金属材料学”是一门理论性较强的课程。在教学过程中,笔者注重理论联系实际,尽可能地通过讲授实际案例激发学生的学习兴趣。如在讲授梯度功能材料时,笔者介绍了越王勾践剑,通过图片展示和对越王勾践剑结构的分析,既展现了中华民族的优秀智慧,又加深了学生对梯度功能材料的认识和理解;又如,在讲授水泥材料时笔者例举了伊朗为应对美国现有的穿地炸弹,已研制出既可抵御钻地炸弹,也可抵御地震的世界最强混凝土——“智能混凝土”,这一案例让学生更加深切体会到新材料的研发和应用直接关系到一个国家的工业活力和军事力量。这些案例的讲解都极大地激发了学生的学习兴趣和科研兴趣。

3.增强互动教学,营造良好的课堂氛围

根据选修课性质,课堂教学采用启发式讲授和学生讨论相结合的互动教学方法,可以很好地调动学生的学习积极性,营造良好的课堂氛围,提高教学质量,增强教学效果。因此,在教学过程中,笔者既重视发挥教师的主导作用,又尊重学生在学习中的主体地位。课堂上,笔者常常向学生提出问题,鼓励学生积极思考,并展开讨论。这种互动教学既激发了学生学习的积极性和主动性,又活跃了课堂气氛。例如,在讲授玻璃的定义时,笔者首先提出“有机玻璃、金属玻璃是玻璃吗?”这个问题,让学生进行思考,各抒己见,然后通过定义讲解,使学生找到正确答案,课堂气氛十分活跃。这种互动教学使学生对定义理解更加透彻,记忆更加深刻,教学效果好。

4.提倡自主学习,充分发挥学生的主观能动性

“授之以鱼,不如授之以渔。”随着现代电子信息技术的进步,充分引导学生运用新技术获取知识和信息,并利用这些信息完成学习任务,发挥学生的主观能动性,提高学生的自学能力,在教学过程中具有十分重要的意义。教师给学生布置课外学习任务,学生需要利用图书馆或网络资源查阅一定数量的文献,并通过自己的独立思考才能完成任务。这种任务驱动式教学方式既可以培养学生的自学能力,锻炼学生分析问题和解决问题的能力,也可以培养学生的创新思维能力,这些能力的培养将为学生今后走上科研或生产岗位奠定良好基础。因此,在教学过程中,笔者提倡通过任务驱动的方式鼓励学生自主学习。这样不仅可以调动学生的学习兴趣,充分发挥学生的主观能动性,培养学生的自学能力和科研能力,同时还可弥补课堂教学内容的有限性,促使学生掌握更多的知识。如在学习特种玻璃时,笔者给学生布置了一项任务,即合理设计一款或多款学生心目中理想的未来玻璃。接到任务后,学生大胆想象,设计出了30多种自己心目中理想的未来玻璃,如破碎后能自动粘合的记忆玻璃、光强和颜色能随人体内电流和电磁波而变的情绪玻璃、不开窗即可自动换气的净化空气玻璃等,这些作品充分展现了学生学习的主观能动性和创新思维能力。又如,在学习完陶瓷、玻璃、水泥和耐火材料这四种传统无机非金属材料后,笔者鼓励学生根据自己的兴趣选择任意一种无机非金属材料制作课件,在课堂上进行演示和讲解,再由学生展开互评。这次教学活动既锻炼了学生查阅文献和综述文献的能力、独立思考的能力以及表达沟通能力,也培养了学生的科研创新能力,获得了学生的一致好评。

三、注重教学效果,改革考核方式

考核环节作为教学活动的有机组成部分,是整个教学过程的重要环节之一。专业选修课的考核一般可根据实际情况采取灵活多样的方式。[3]传统的闭卷考核形式,需要学生死记硬背的知识点多,学生复习吃力,容易让学生造成思想负担,给学生学习带来压力,不利于调动学生学习的主动性和积极性;而采用课程论文形式进行考核,在信息高度发达的现代社会,学生中容易出现利用网络资源抄袭的现象,无法真正反映出教学效果。“无机非金属材料”课程作为金属材料工程专业的专业选修课,侧重于拓展学生的知识面,培养学生的综合专业能力。鉴于该课程的选修课性质和内容多、知识面广、学生全面掌握知识点难度较大等实际情况,为提高学生的学习积极性,并真实反映出学生的学习效果,笔者对该课程的考核方式也进行了相应改革,采取了过程性考核与终结性考核相结合的考核方式。其中,过程性考核成绩占该课程成绩的30%,考核内容主要包括课堂表现、出勤情况和任务完成情况等;终结性考核占70%,具体采用开卷考试形式进行。这种考核方式既可以较客观地反映学生对课堂知识的了解和掌握情况,也可以较真实地反映学生参与这门课程的学习态度和科研创新思维能力,从而真正体现出这门课程的教学效果。

四、结语

“无机非金属材料”课程作为一门内容多、知识面广、关注学科前沿的专业选修课,随着新材料及其技术的不断发展,其教学内容还需不断调整,教学方法、教学手段和考核方式也有待于进一步改进,这样才能更好地调动学生学习的积极性和主动性,提高教学质量,增强教学效果,从而为社会和企业培养出紧跟时代步伐的“高素质、强能力、应用型”材料类高级专业人才。

参考文献:

[1]戴金辉,葛兆明.无机非金属材料概论[M].哈尔滨:哈尔滨工业大学出版社,2004.

金属材料论文第7篇

关键词:金属材料组织;使用性能;工艺性能;关系

金属材料一般是指纯金属和具有金属特征的合金材料。金属材料大致可以分为黑色金属和有色金属,黑色金属主要就是指钢铁产品,众所周知这也是目前我国工业化生产过程中最普遍和重要的金属材料。相比黑色金属,有色金属在我国因其含量较少且加工难度相对而言比较大,使用范围就有所局限,所以它只会用于特殊零件的生产。金属材料种类众多,性能各异,由此看来,在机械加工的过程中要根据实际需要选择合适的金属材料和加工工艺,就需要我们尽可能多地掌握金属材料的组织和性能及两者之间的关系。

1 金属材料组织与使用性能之间的关系

使用性能,顾名思义就是金属材料在应用过程中所展现出来的性能,主要包含力学性能、物理性能和化学性能,使用性能直接决定了金属材料的应用环境和使用寿命。

1.1 金属材料组织与力学性能之间的关系

力学性能是金属材料在承受外来载荷时所体现出来的性能。就拿最常接触的铁碳合金来说它有5种基本组织,分别为铁素体、奥氏体、渗碳体、珠光体和莱氏体。铁素体强度和硬度低,塑性和韧性好;奥氏体塑性好,适合压力加工,强度和硬度比较高;渗碳体是铁和碳所组成的金属化合物,硬度高、脆性大;珠光体是铁素体和渗碳体组成的其力学性能介于两者之间;莱氏体是奥氏体和渗碳体组成的,其硬度高、塑性差。可见不同的材料组织在性能上会有明显差异,碳含量低,它的强度和硬度就低,可是其塑性和韧性却相反。随着碳含量的增加,材料组织中珠光体的量变多,也就使得钢的强度和硬度增加,当然塑性和韧性就会有所降低。总的来说,不论是通过上述方法还是采用冷拉拔或热处理等方法改变金属材料的组织,都会使得原材料展现出与之前完全不同的性能。

1.2 金属材料组织与物理性能之间的关系

不同的金属材料是有其使用范围的,它会在不同的条件下表现出不同的物理性能,比如钢在1538。C时会由固体状态向液体状态转变。导热性是金属材料重要的物理性能,金属材料导热性比非金属好,金属中导热性最好的莫过于银,但在实际生产中我们会选择性价比更高的铜或铝来做原材料。导热性好的金属其散热性能自然也好,比如冰箱的散热片就会选择用这类金属材料制造。金属材料制品很多时候会使用于强度比较大、温度比较高的场所,但是大家都知道金属材料具有热胀冷缩特性,即其受热体积变大,遇冷收缩,对于精密仪器,选择热膨胀性比较小的金属材料很有必要。例如铁碳合金中的奥氏体组织含碳量低,但是加入镍后再进行固溶处理从而得到单相组织,其耐热性就会大幅度提高。

1.3 金属材料组织与化学性能之间的关系

金属材料的化学性能就是其在化学作用下表现出来的性能,耐腐蚀性和抗氧化性是在选择金属材料时常常需要考虑的问题。常说的钢铁生锈,其实质就是腐蚀现象,为了提高金属材料的抗氧化性,一般会在钢中加入适量的铬、铅等元素在金属材料表面生成一层致密的氧化膜来阻止其被氧化。对于改善金属材料的耐腐蚀性也有一定的措施,比如提高基电极的电位,尽可能使合金在常温下呈现单相组织状态。

2 金属材料组织与工艺性能之间的关系

所谓金属材料的工艺性能就是金属原料在加工过程中对不同加工温度或环境所表现出来的性能,文章针对其铸造、锻压、焊接、热处理和切削加工性能与金属材料组织之间的关系进行介绍。

2.1 金属材料组织与铸造性能之间的关系

金属铸造就是把熔融金属填充到铸型中冷却并凝固,从而得到所需尺寸的铸件的过程。合金的铸造性能就表示的是合金铸造成型获得优质铸件的难易程度,这一性能常用流动性和收缩量来衡量,纯金属材料和共晶合金的流动性比较好,易形成缩孔。一般来说金属材料冷却并凝固后组织是否均匀对金属材料铸造性能的影响很大,如果内部组织不均匀就会导致铸件的性能存在较大差异,不仅导致铸件质量差,甚至还会存在安全隐患。

2.2 金属材料组织与锻压性能之间的关系

锻压就是通过对原材料施加外力,改善金属组织,进而提高其力学性能的过程。金属材料的锻造性能主要用来衡量加工工艺的好坏,一般用塑性和变形抗力来权衡这一性能,即塑性越好,变形抗力越小,金属材料可锻性越好。金属材料组织对这一性能也有一定影响,总的来说,固溶体的可锻性好,晶粒细小且均匀的组织可锻性好,碳化物的可锻性差。因此,纯金属比合金锻压性能好,对于铁碳合金,含碳量越低,锻压性能也就越好。

2.3 金属材料组织与焊接性能之间的关系

金属材料的焊接性能就是被焊金属在特定的焊接条件下获得优质焊接接头的难易程度。对于碳钢的焊接,低碳钢焊接性能好,中碳钢焊接性能有所下降,高碳钢焊接性能差,为此一般都会避免使用高碳钢作为焊接结构件。不同组织的铁碳合金因其含碳量有所差异,其焊接性也不尽相同:奥氏体碳含量低,焊接性能好;而热影响区的铁素体晶粒易过热粗化;马氏体焊后淬硬倾向大,易出现冷裂纹;珠光体焊接性较差。

2.4 金属材料组织与切削加工性能之间的关系

切削加工性能用来表征切削加工金属材料的难易程度。从表象来看,切削性能与材料硬度有关,但实际上金属材料的切削加工性能与组织状态联系更为密切。如果硬度较高,加工困难,但光洁度好;如果硬度过低,粘刀严重,光洁度就差,其实这就是钢的组织产生的影响。在实际工业生产过程中常用热处理的方法改变金属材料的组织和力学性能进而改善金属材料的切削加工性能,比如低碳钢先进行正火处理或冷拔处理可以提高硬度;中碳钢先进性退火处理可提升切削加工性能;高碳钢先进行球化退火可降低硬度。

3 结束语

金属材料与人类生产和日常生活息息相关,金属材料种类众多,根据其性能应用场合也不尽相同,不同的金属原材料也有与之相对应和匹配的加工工艺,以次来得到优质的金属材料产品。金属材料应用广泛,应用环境不同,对金属材料的性能也就提出了不同的要求,这就需要充分考虑金属材料的使用范围和利用相关工艺改变金属材料组织进而提高性能的手段。文章所介绍的内容虽然对于研究金属材料组织和性能的关系进行了阐述,但是要想更加完善,还需要相关人员不断深入研究。

参考文献

[1]李德恒.浅谈金属材料的组织与性能的关系[J].中国科技财富,2010(24).

金属材料论文第8篇

关键词:加工条件;拉伸速度;试样加工;金属材料;拉伸性能

DOI:10.16640/ki.37-1222/t.2017.13.011

0 引言

随着社会的进步以及金属材料应用领域的逐步扩大,其对人们的生活有着越来越重要的影响,而拉伸性能作为检验金属材料是否符合规定标准的重要指标之一,要求在金属材料的加工过程中应当具备较高的加工工艺。基于此,本文笔者将结合自己的工作实践就加工对金属材料拉伸性能的影响问题进行探讨,以供商榷。

1 金属材料的特殊性质

金属材料通常是指由金属元素或以金属元素为主所构成的具有金属特性的材料的统称,主要包括纯金属、特种金属、合金以及金属材料金属间化合物等。一般来说,在金属材料的加工过程中,其组织会受到一定的影响而发生相应的改变。因此,了解并把握金属材料的特殊性质对加工具有至关重要的影响,具体而言,金属材料的特殊性质主要表现为如下三个方面:

(1)疲劳。许多金属材料,例如:工程构件、机械零件等,在工作过程中需要承受交变载荷,在此作用下,虽然金属材料的屈服极限远远高于应力水平,但经过长期的应力循环作用后,也会出现突然脆性断裂现象,此现象就是金属材料的疲劳,是一种最常见也最危险的断裂形式。(2)塑性。在载荷外力的作用下,金属材料所呈现的永久变形而不被破坏的能力即为金属材料的塑性。金属材料的塑性越好,越能在较大的范围内形成塑性变形,并在塑性变形的过程中强化金属材料的强度,增加金属材料的安全性。(3)硬度。硬度主要是指金属材料对硬物体压入其表面的抵抗能力,是考量金属材料性能的重要指标之一。金属材料的硬度是起始塑性变形抗力与继续塑性变形抗力共同作用的结果,一般来说,金属材料的硬度越高,耐磨性也就会越好。

2 加工对金属材料拉伸性能的影响

2.1 加工条件对金属材料拉伸性能的影响

根据加工时成型温度、时间以及压力的不同,金属材料拉伸性能会受到不同程度的影响,其中以横向拉伸强度所受的影响最为突出。通常而言,随着成型温度的升高,金属材料内部的分子运动能量、熔体的自由体积以及链段的活动能力均会随之增加,从而降低分子间的相互作用及熔体粘度,增加金属材料的横向拉伸强度。但这不并不意味着成型温度越高越好,因为成型温度如果过高,就会使聚丙烯树脂本身的氧化速度加快,导致大分子主链断裂等不良情形,影响金属材料的性能。其次,金属材料的横向拉伸强度会随着加工时间的延长而呈现出先增加后趋于平缓的趋势,加工时间过短容易导致聚丙烯树脂熔体出现流动不畅等不良现象,但在达到饱和值后再延长时间,同样不会对结果有太大的改变。最后,金属材料的横向拉伸强度会随着压力的增大呈现出先增后减的趋势,压力在3MPa~7MPa之间,金属材料的横向拉伸强度会随压力的增加而增加,而当压力在7MPa~9MPa之间,横向拉伸强度则会随着压力的增加而降低,因此,压力对金属材料拉伸性能的影响是双面的,在加工过程中应当根据需要进行合理的控制。

2.2 拉伸速度对金属材料拉伸性能的影响

在金属材料的内部往往存在着位错等晶体缺陷,而在常温状态下,金属材料拉伸性能主要呈现在弹性变形阶段与塑性变形阶段。其中金属材料的塑性变形主要依靠位错方式来完成,一旦外力作用超过滑移的临界值,便会导致向晶向和晶面运动,而在运动过程中会产生相应的运动速度,这就导致金属材料在拉伸过程中,抗拉强度会随着拉伸速度的提高而升高。此外,金属材料在拉伸过程中,拉伸时间会存在一定的滞后性,若在低的拉伸速度下,金属材料可以承受200kN拉力,一旦拉伸的速度提高,同样给予金属材料200kN拉力,则会因位错密度远远高于在低的拉伸速度下状态,而导致金属材料断裂,因而拉伸速度的提高会大幅度降低金属材料的断后伸长率,并在达到临界值后呈现趋缓下降趋势。

2.3 试样加工对金属材料拉伸性能的影响

样坯切取和试样制备作为试样加工的两大重要环节,其中取样方向、位置、方法以及试样形状、尺寸、制备方法的不同,均会对金属材料拉伸性能产生一定的影响。具体影响主要表现为如下几个方面:首先,在和轧制方向相同的部位取样,能够增加金属材料的抗拉强度和屈服强度,提高金属材料拉伸性能,次之45°方向取样,而在和轧制方向垂直的部位取样金属材料的拉伸性能最差。其次,由于受组织结构、化学成分等不均匀性因素的影响,会使金属材料不同部位的力学性能出现一定的差异。以H型钢为例,腹板和翼缘的拉伸性能就存在很大的差别,通常对于翼缘宽度超过200mm的H型钢,应当在翼缘1/3处进行切取取样。最后,试样的制备方法包含很多种,如:冷剪法、砂轮片切割法、机械加工法以及火焰切割法等,但无论运用哪种方法,在操作过程中均应避免受热不均、加工硬化以及变形等不良现象的产生,保证金属材料的力学特性,增强其拉伸性能。

3 Y束语

综上所述,在金属材料的加工过程中,无论是加工条件、拉伸速度还是试样加工均会对金属材料拉伸性能产生一定的影响,使其抗拉强度、断后伸长率以及横向拉伸强度发生相应的改变。因此,这就要求相关工作人员在工作实践中,应当充分了解并把握金属材料的特殊性质,并增强加工对金属材料拉伸性能影响问题的重视程度,从而逐步提高加工工艺,促使金属材料外观以及拉伸性能的切实提高。

参考文献:

[1]田广明.试样加工对金属材料拉伸性能的影响[J].理化检验(物理分册),2011,47(06):365-367.

[2]耿富强,刘兵华,李美琳.试样取样与加工对美标金属材料拉伸性能的影响[J].化工装备技术,2013,34(02):30-32.