首页 优秀范文 重金属污染危害

重金属污染危害赏析八篇

时间:2023-12-28 17:04:57

重金属污染危害

重金属污染危害第1篇

摘 要:一直以来,治理土壤中的重金属污染都是全球各国亟待解决的一项难题。当前我国土壤重金属污染问题相对较为严峻,且引发这一问题的因素相对也比较复杂。而此种污染问题的出现,不仅会对生物的生长带来极大的危害,还会降低作物的总产量,并对人的生命健康造成极大的威胁。对此,本文以土壤的重金属污染为立足点,通过对我国土壤污染现状和危害的分析,从而就缓解和解决土壤污染问题的策略展开研究。

关键词:土壤重金属污染;危害;修复技术

中图分类号:X53 文献标识码:A DOI:10.11974/nyyjs.20170230224

就土壤本身来看,其之所以会产生重金属污染,主要是因为人类在活动期间将重金属物质带入到土壤内部,使得土壤内的重金属含量增多,破坏生态环境。随着农村人口数量的增长和农业生产过程中对化肥和农药使用量的增加,导致土壤中有害物含量增多,自身生态结构和环境质量被破坏。其中,重金属是对土壤生态结构影响最大的一种元素。为了重塑土壤生态结构,提高土壤内部环境质量,解决土壤存在的重金属污染问题势在必行。

1 土壤污染现状和危害

1.1 重金属污染现状

在2005年到2013年的12月,我国土地管理局第一次开展了有关全国土壤污染情况的调查研究。按照我国在2014年由国土资源部和环保部共同的有关《全国土壤污染状况调查公报》所公示的调查结果看:当前我国土壤生态环境的状况整体来讲十分严峻,特别是重金属污染问题,更是极为严重。在我国一些废弃工矿所在区域的周边位置,土壤的重金属污染问题十分的突出。其中,我国有16.1%的土壤,重金属污染总超标率相对较重,11.2%超标率属于轻微范围;而轻度超标率和中度以上的超标率分别达到了2.3%和2.6%。

1.2 重金属污染的危害

同其他土壤污染类型相比,重金属污染本身的隐匿性、长期性、不可逆性较强,且这种污染问题一旦出现,则很难消逝。一旦重金属污染存在于土壤中,不仅很难被移动,还会长时间滞留在其产生区域,不断污染周边土壤。与此同时,重金属污染物不仅无法被微生物有效降解,还会借助植物、水等介质,被动植物所吸收,而后进入到人类食物链之中,对人体健康a生威胁。从具体的情况来看,重金属污染主要存在以下几种危害类型:对作物生产造成不利影响。因为重金属污染物在土壤与作物系统迁移的过程中,会对作物正常的生长发育和生理生化产生直接影响,从而降低作物的品质与产量。例如,镉属于对植物生长危害性较大的重金属,如果土壤镉含量较高,植物叶片上的叶绿素结构就会被破坏,根系生长被抑制,阻碍根系吸收土壤中的养分与水分,降低产量;会对人体生命健康带去影响。土壤中存在的重金属污染物可以借助食物链对人体健康造成危害。例如,汞进入人体后被直接沉入到肝脏中,破坏大脑的视神经。

2 解决重金属污染问题的方法

2.1 工程治理法

所谓的工程治理法,是通过利用化学或者是物理学中的相关原理,对土壤中的重金属污染问题展开有效治理的一种方法。现阶段,工程治理法主要包括了热处理法、淋洗法与电解法等[1]。在众多重金属污染处理方法中的处理效果更好、处理工艺的稳定性更高。但该项方法处理过程和处理工艺复杂,需要花费的成本高,且经过该方法处理后的土壤,其本身的肥力会有所降低。

2.2 生物治理法

该方法指的是借助生物在生长过程中的一些习性,来达到改良、抑制、适应重金属污染的目的。在该项治理方法中最为常见的就是微生物、植物和动物治理法。生物治理是利用鼠类和蚯蚓等动物能够吸收重金属的特性;植物治理则是利用植物积累到一定程度可以清除重金属污染,对重金属具有忍耐力的特质。工程治理法相比,生物治理方式投资相对较小、管理便利、对环境破坏性小等优势,但治理时间较长[2]。

2.3 化学治理法

化学治理法是通过向已经被重金属污染的土壤中投入适量的抑制剂和改良剂等其他化学物质的方式,增加有机质、阳离子等在土壤中代换量和粘粒含量,来改变被污染土壤电导、Eh、pH等其他理化性质,使重金属可以通过还原、氧化、拮抗、吸附、沉淀、抑制等化学作用被有效消除[3]。

3 结束语

在社会经济发展水平不断提升,重金属对土壤污染程度逐渐加深的今天,对重金属污染现状,以及其可能会造成的危害等问题展开细致的分析与研究,并利用工程、生物、化学等方式来有效的缓解和治理土壤当前存在的重金属严重污染问题,能够对我国土壤的生态环境和内部结构进行重构,为我国城市发展和社会建设提供充足的土壤资源。

参考文献

[1]崔德杰,张玉龙.土壤重金属污染现状与修复技术研究进展[J].土壤通报,2004(3):366-370.

重金属污染危害第2篇

关键词:土壤 重金属污染

1、研究背景

据我国农业部进行的全国污灌区调查,在140万公顷的污水灌区中,遭受重金属污染的土地面积占污水灌区面积的64.8%,其中轻度污染的占46.7%,中度污染的占9.7%,严重污染的占8.4%。由此可见我国土壤受重金属污染的情况较为严峻[1]。

在环境污染研究中,重金属多指Hg,Cd,Pb,Cr以及类金属As等生物毒性显著的元素,其次是指有一定毒性的一般元素,如Zn,Cu,Ni,Co,Sn等。人们所说的土壤重金属污染主要是由于Zn,Cu,Cr,Cd,Pb,Ni,Hg,As8种重金属元素等引起的土壤污染。土壤是人类赖以生存的自然条件,如果土壤被重金属污染将直接导致粮食、蔬菜、瓜果等的重金属含量增加。同时因为重金属不能为土壤微生物所分解,而易于积累转化为毒性更大的甲基化合物,甚至有的通过食物链以有害浓度在人体内蓄积,从而严重危害人体健康[2]。由于重金属在土壤中难以被分解、转化或吸收,所以充分认识土壤污染及危害,保护土壤,防治污染是十分重要的任务。

2、土壤重金属污染的特点

大多数重金属是过渡性元素,而过渡性元素的原子具有其特有的电子层结构,这使重金属在土壤环境中的化学行为具有下列一系列特点;

(1)重金属具有可变价态,它能在一定的幅度内发生氧化还原反应。不同价态的重金属具有不同的活性和毒性。

(2)重金属易在土壤环境中发生水解反应,生成氢氧化物;它也易与土壤中的一些无机酸发生反应生成硫化物、碳酸盐、磷酸盐等。这些化合物在土壤中的溶解度较小,所以重金属不易迁移而易累积于土壤中,从而降低了污染危害范围扩大的可能性,但却使变长了污染区的危害周期和加大了重金属危害程度。

(3)重金属作为中心离子,能够接受多种阴离子和简单分子的独对电子,生成配位络合物:还可与一些大分子有机物,如腐殖质、蛋白质等生成鳌合物。上述反应增大了重金属在水中的溶解度,进而使重金属在土壤环境中更易迁移‘从而增大了重金属污染区域范围。

重金属的所有这些化学特性,决定了重金属在土壤环境中具有多变的迁移特性。重金属污染的主要特点,除了污染范围广、持续时间长外,还有污染隐蔽性,而且它无法被生物降解,并可能通过食物链不断地在生物体内富集,进而可转化为毒害性更大的甲基化合物,对食物链中某些生物产生毒害,最终在人体内蓄积而危害人体健康。重金属的上述特性决定了其在污染和环境危害中的特殊作用。

3、土壤重金属污染的危害

土壤重金属污染对环境产生的危害主要有下列途径:

(1)受污染的土壤直接暴露在环境中,动物或人直接或间接地吸收了受污染的土壤颗粒等;

(2)土壤中的重金属通过淋溶作用向下缓慢渗透,从而污染了地下水;

(3)外界环境条件的变化,例如酸雨、施加土壤添加剂等因素,提高了土壤中重金属的活性和生物有效性,使得重金属较易被植物吸收利用,从而进入食物链后对动物和人体产生毒害作用。

4、重金属污染土壤治理方法

土壤重金属污染的治理,世界各国都开展了广泛的研究工作。目前,所采用的土壤重金属污染的治理方法主要有下列四种。

4.1生物措施

生物措施是利用生物的某些特性来适应、抑制和改良重金属污染土壤的措施。生物措施包括动物治理、微生物治理和植物治理三种方法。

动物治理是利用土壤中的某些低等动物(如虹蜕和鼠类)能吸收土壤中的重金属,因而能一定程度地降低污染土壤中重金属的含量。在重金属污染的土壤中放养蛆蜕,待其富集重金属后,采用电激、灌水等方法驱出蛆叫集中处理,对重金属污染土壤也有一定的治理效果[3]。

植物治理是利用有些植物能忍耐和超量累积某种或某些重金属的特性来清除污染土壤中的重金属。通常,它有三个部分组成:植物萃取技术、根际过滤技术、植物挥发技术。植物治理的关键是寻找合适的超积累或耐重金属植物。

生物措施的优点是实施较简便、投资较少和对环境拢动少。缺点是治理效率低(如超积累植物通常都矮小、生物量低、生长缓慢且周期长),不能治理重污染土壤(因高耐重金属植物不易寻找)和被植物摄取的重金属因大多集中在根部而易重返土壤等。

4.2工程措施

工程措施包括客土、换土、翻土、去表土等方法,适用于大多数污染物和多种条件。

客土是在污染土壤上加入未污染的新土;换土是将已污染的土壤移去,换上未污染的新土;翻土是将污染的表土翻至下层:去表土层是将污染的表土移去。这些方法能使耕作层土壤中重金属的浓度降至临界浓度以下,或减少重金属污染物与植物根系的接触而达到控制危害的目的。

用工程措施来治理重金属污染土壤,具有效果彻底、稳定等优点,是一种治本的措施。但由于存在实施繁复、治理费用高和易引起土壤肥力减弱等缺点。因而一般适用于小面积、重污染的土壤。

4.3农业措施

农业措施是因地制宜的改变一些耕作管理制度来减轻重金属的危害,以及在污染土壤上种植不进入食物链的植物。

用农业措施来治理重金属污染土壤,具有可与常规农事操作结合起来进行、费用较低、实施较方便等优点,但存在有些方法周期长和效果不显著等缺点,农业措施适合于中、轻度污染土壤的治理。

4.4化学措施

化学措施是向污染土壤投加改良剂,增加土壤有机质,阳离子代换量和粘粒的含量,以及改变pH,Eh和电导等理化性质,使土壤中的重金属发生氧化、还原、沉淀、吸附、抑制和拮抗等作用,以降低重金属的生物有效性。

用改良措施来治理重金属污染土壤,其治理效果和费用都适中,对污染不太重的土壤特别适用。但需加强管理,防止重金属的再度活化。

5、结论

随着土壤重金属污染日益加剧,土壤重金属污染的治理已成为当前研究的热点。土壤重金属污染具有高累积性和不可逆转性,污染一旦发生,仅依靠切断污染源的方法难以进行彻底恢复。目前,己有一些污染土壤治理的方法,但从其发展和需求来看,还须发展更加有效的治理技术。

参考文献:

[1]陈志良,仇荣亮.重金属污染土壤的修复技术[J]环境保护,2002.29(6).21-23.

重金属污染危害第3篇

关键词:城镇污水处理厂;污泥泥质监测;资源化风险评价

引言

生活污水处理厂收集到的污水是城区综合生活污水、小工业废水与主城区地区部分工业废水及生活污水,而石油、化工、电镀、冶金等大工业生产废水自成系统,分别自建污水处理厂,将工业生产废水处理达到《污水综合排放标准》及行业排放标准后排放,故污水处理厂污泥中重金属含量水平不高。

1 污泥概述

污泥为在污水处理过程中产生的半固态或固态物质,不包括栅渣、浮渣和沉砂。根据污泥的产生的不同工艺环节将污泥大致分为:初沉污泥、活性污泥、化学污泥与消化污泥等,其中初沉污泥在污水处理的初沉系统经沉淀产生,活性污泥在污水处理的生反系统因微生物新存代谢产生,化学污泥在污水处理的深度处理因投加化学药剂产生,消化污泥为污泥经消化反应后形成的。

2 城镇污水处理厂污泥泥质监测及资源化风险评价

2.1 检测与分析方法

此实验检测项目包括pH、含水率、Cd、Cr、Cu、Zn、Pb、As、Hg、Ni、矿物油、挥发酚、多环芳烃、有机质和氮磷钾。pH和含水率采用梅特勒酸度计(S220 ,瑞士)和电子天平(MS204TS,瑞士)进行测定;Cu、Cd、Zn、Pb、Ni和钾采用原子吸收分光光度计(A3F-13 ,中国)测定;As和Hg采用原子吸收分光光度计(AFS-9700 ,中国)测定;Cr采用电感耦合等离子体发射光谱仪(Optima8300 ,美国)测定;挥发酚、氰化物和氮磷采用紫外可见分光光度计(1810 ,中国)测定;矿物油采用红外分光测油仪(JDS-106U+,中国)测定;多环芳烃采用气相色谱质谱联用仪(QP2020Ultra,日本)测定.为保证检测工作质量,本项目通过精密度控制(至少10%平行样测试)、准确度控制(加标回收、标准参考物或质控样测试)、实验室空白测试和标准点检验等质控措施,确保检测样品质控率不低于10%.数据分析时,若标准差远远大于均值,可判定数据存在异常值,并对其进行处理,所有数据和绘图均采用Origin9.0 软件和Excel2013 进行处理和分析.

2.2 结果与讨论

2.2.1 污泥重金属相关性分析和来源

在污水污泥中,重金属之间往往具有复杂的相关关系,它们之间的关系主要由人为因素控制,如人类活动和工业分布等,其次也会受到底层岩性的影响.采用Pearson相关分析法对污泥重金属之间的相关性进行分析,从中可知,Pb和Cd(r=0.601)之间是呈强相关性,As和Cr(r=0.586)之间呈显著相关,Cr和Ni(r=0.478)之间是呈显著相关,Ni和As(r=0.523)之间是呈显著相关。Pb和Cd之间呈强相关关系、As和Cr之间的显著相关关系、Cr和Ni之间的显著相关关系和Ni和As之间的显著相关关系表明Pb和Cd可能具有同源污染物质,As、Cr和Ni可能受相同的人类活动所影响。

2.2.2 污泥重金属生态风险评价

采用内梅罗综合指数评价法可以看出各种重金属生态污染指数大小顺序为:Cr>Hg>Zn>Ni>Pb>As>Cu>Cd,Cr的污染指数最高,为3.19 ,Cd污染指数最低,为0.19 .按照评价标准,8 种重金属中有4 种污染水平为处于清洁;8 种重金属内梅罗综合污染指数为5.3 ,内梅罗加权综合污染指数为19.1 ,表明该市49 家污水处理厂污泥在处理不当的条件下,其重金属含量总体上对环境存在着一定的风险。49 个污泥样品中重金属污染等级处于轻度污染(Ⅲ级)及以下的样品有29 个,处于中度污染等级的污泥样品有14 个,处于重度污染等级的样品有6 个;处于重金属中度污染等级的14 个污泥样品中,有12 个污泥样品的最大污染贡献金属为Hg,其余2 个污泥样品的最大污染贡献金属分别为Pb和As;处于重金属重度污染等级的6 个污泥样品中,有2 个污泥样品的最大污染贡献金属为Hg,其余4 个污泥样品的最大污染贡献金属分别为Cu、Zn、Pb和Cr.综上可见,重金属Hg、Cu、Zn、Cr、Cd和As对生态环境风险较大,因此,在污泥农用于土壤前,应加强对重金属的去除与治理,降低其含量值,尤其要重视对风险较大重金属的去除.采用Hakanson潜在生态危害指数评价法对该市49 家污水处理厂污泥中重金属进行评价,各种重金属潜在生态危害等级大小顺序为:Hg>Cr>Cd>As>Pb>Cu>Ni>Zn,其中,Hg金属潜在危害最大,为中等生态危害,其他7 种金属均为轻微生态危害。所有污水处理厂的复合潜在生态危害指数(RI和RI')为89.6 和240.4 ,显示污泥危害程度为中等,所有污泥样品中重金属污染等级处于中等生态危害及以下的样品有47 个,最大污染贡献金属分别为Hg、Cd和As,处于强生态危害的样品均为2 个,最大污染贡献金属分别为Hg、Cr和Cu.由上可见,处于生态危害顶层的重金属仍然主要为Hg、Cd、Cr和As,说明该市污水处理厂污泥中重金属,尤其是Hg、Cd和As等致癌重金属的控制应引起足够重视。由此可见,部分污水处理厂污泥虽然符合污泥农用标准,但是综合生态风险评价表明其农用会对环境造成一定的生态风险,应合理选择其他资源化方式,如焚烧或水泥窑协同处置。在符合《农用污泥污染物控制标准(GB4284-2018)》A级的9 家污水处理厂中,有1 家污水处理厂污泥属于重度污染和强生态危害,符合B级的35 家污水处理厂中,有3 家污水处理厂污泥属于重度污染和强生态危害,因此,部分污水处理厂污泥虽然符合污泥农用标准,但是综合生态风险评价表明其农用会对环境造成一定的生态风险,应合理选择污泥资源化方式。

结语

污泥土地利用时,严格控制污泥的有毒、有害物质及病原微生物含量,使其达到国家标准;特别注意污泥中重金属的含量,污泥经高温好氧堆肥处理后,堆肥中的重金属发生钝化,由有效性较高的结合形态向有效性较低的结合形态转化同时杀灭病原微生物。根据其土壤背景值等情况,严格按照计算的污泥施用量进行施用;使土地利用控制在安全施用量之下。同时整个利用区应该建立严密的管理、监测和监控体系,关注区域内的土壤、地下水、地表水、植物等相关因子的状态和变化,使得污泥的土地利用更加安全有效,促进地区经济繁荣和农业的可持续发展。

参考文献

[1]《农用污泥监测分析方法》CJ/T221 -2005[S].

重金属污染危害第4篇

关键词:沉积物;重金属;总量;潜在生态危害指数

收稿日期:2011-11-07

基金项目:科技基础性工作专项(编号:2006FY110600)资助

作者简介:刘嘉妮(1985―),女,湖南长沙人,中南林业科技大学林学院硕士研究生。

通讯作者:廖柏寒(1957―),男,湖南长沙人,教授,主要从事环境化学的教学研究工作。

中图分类号:X593

文献标识码:A

文章编号:1674-9944(2011)11-0094-03

1引言

洪泽湖是中国第4大淡水湖,属于浅水湖泊,跨洪泽、淮阴、泗阳、泗洪和盱眙5县,位于北纬33°06′~33°40′,东经118°10′~118°52′,水位12.37m,长65.0km,平均宽24.26km,面积1 576.9km2,平均水深1.77m,蓄水量27.9×108m3[1]。全湖水域由成子湖湾、溧河湖湾、淮河湖湾3大湖湾组成。上游进入洪泽湖的河道集中在湖的西部,主要包括淮河、濉河、汴河、安河等。 下游出湖的主要河道在东部,主要有有淮河入江水道、苏北灌溉总渠、淮沭新河和淮河入海水道。全湖年均水温16.3℃,最高水温在9月,为28℃,最低水温在1月,为3℃。

沉积物是湖泊的重要组成部分,沉积物可以作为水环境中重金属污染程度的“指示剂”,反映湖泊演化的历史过程[2],反映湖泊受重金属污染的状况和程度[3]。沉积物既是重金属污染物的储备库,又是对环境具有影响的潜在重金属污染源[4]。水体中的重金属随水中的颗粒物迁移、归宿并沉积于沉积物中。在适宜的条件下,毒性重金属能通过各种方式从沉积物中再次向水体中释放,形成二次污染,从而影响上覆水体的水质,进而影响到水生生物、人类健康和水体生态环境[5~7]。

目前对于重金属赋存形态的研究基本还处于描述性阶段,今后应使其定量化。对沉积物中重金属污染评价还没有一个统一的标准,还有待做更深入的工作,沉积物质量评价研究进展缓慢。缺少统一的沉积物质量基准建立方法,不同方法所制订出的沉积物质量基准值相距甚远。

2材料与方法

2.1样品的采集

为研究洪泽湖沉积物中重金属的污染状况,于2008年9月,对洪泽湖全湖进行了调查采样。根据湖泊的特点布设了17个监测点位(图1)。各采样点依托GPS导航仪分别用“蚌”式采样器采集,用塑料铲取所采样品中心部分快速装入聚乙烯自封袋中,驱赶尽袋内空气后密封,放入便携保温箱中空运回实验室,于4℃下冷冻保存。

图1洪泽湖采样点位

2.2样品的测定

样品于-45℃冷冻干燥机中干燥,去除植物残骸、贝壳、砾石等杂质,用玛瑙研磨器研磨并过100目尼龙筛,用于重金属总量的分析。重金属的总量分析采用HNO3-HCl-HF-HClO4 体系电热板消解法[8],用电感耦合等离子发射光谱仪(2000DV,OPTIMA)测定Cu、Ni、Zn、Pb、Cr的含量,用电感耦合等离子质谱仪(7500a,Agilent)测定Cd的含量。

实验过程中,同时做空白样、水系沉积物标准样(地球物理化学勘查研究所 GSD-4 GBW07304)、平行样的实验。通过对标准样品的分析发现,所有测定元素的误差均小于5%。所有的玻璃仪器和聚四氟乙烯坩埚在使用前都在10%的硝酸溶液中浸泡24h,然后用自来水、超纯水冲洗干净。

2.3潜在生态危害指数法

运用瑞典科学家Hakanson[10]提出的潜在生态危害指数法来进行重金属生态危害评价。

单个重金属的潜在生态危害指数:

Eir=TirCIr。(1)

多种重金属的潜在生态危害指数:

RI=∑niEir=∑niEirCir=∑niEirCn表层Cin。(2)

上述两式中,Cir为某一重金属的污染系数,Ci表层为表层沉积物重金属浓度实测值;Cin为计算所需要的参比值;Cd是多种金属污染系数之和;Tir为各重金属的毒性响应系数。本文采用江苏省土壤背景值[10]作为洪泽湖沉积物中重金属的参比值,重金属毒性响应系数的确定参照Hakanson等[11]的方法,其结果见表1。

表1重金属的参比值(Cin)和毒性系数(Tin)

CuNiZnPbCrCd

江苏省土壤背景值22.3 26.762.6 26.2 45.9 0.126

毒性系数5515230

通过计算出单个金属和多个金属的潜在生态危害指数,可评出沉积物中重金属的生态危害程度。表2列出了潜在生态危害指数及分级关系。

3结果与分析

3.1重金属的总量分布特征

洪泽湖表层沉积物中重金属的总量分布如图2所示。将洪泽湖全湖分为3个湖区:东部湖区(1~6号点)、西部湖区(7~12号点)和北部湖区(13~17号点)。从图2可以看出,各采样点Cu、Ni、Zn、Pb的含量变化趋势相似,可能拥有同样的污染来源。东部和北部湖区Cu、Ni、Zn、Cr的含量远远大于西部湖区的值,西部湖区这4种金属的含量均低于江苏省土壤背景值,这是由于受到二河闸以及高良润进水闸的影响;Cd污染主要分布在西部湖区,西部湖区接受了淮河、濉河、汴河、安河等水系的来水,Cd污染整体较严重。

全湖区Cu污染较轻,各点Cu含量均低于土壤环境质量一级标准值;北部湖区的Zn、Cr含量属于二级标准,东部及西部湖区的含量在一级标准值范围内;全湖区Pb污染较严重,除东部湖区个别点外,其余各点的含量均属于二级标准;北部湖区Cd在一级标准值范围内,东部湖区Cd含量属于二级标准,西部湖区Cd含量超出了二级标准。

图2洪泽湖表层沉积物中重金属的总量分布特征

3.2潜在生态危害指数法评价沉积物中重金属的污染程度

洪泽湖沉积物各重金属元素生态危害系数的计算结果见表3。

3.2.1单个重金属的潜在生态危害指数Eir

从表3可以看出,Cu、Ni、Zn、Pb、Cr的潜在生态危害都很小,为低值。潜在生态危害较大的金属是Cd,西部湖区Cd的潜在生态危害指数与其他湖区相比较大,其潜在生态风险达到了很高甚至极高风险,这是因为西湖受到上游河道来水的影响,带来了大量污染物质。北部湖区Cd生态风险指数低风险。

3.2.2多个重金属的潜在生态危害指数

总体来看,洪泽湖总的潜在生态危害指数属于低风险,只有西部湖区几个点的总潜在生态危害指数达到了中等甚至高风险。图3为洪泽湖表层沉积物中各重金属潜在生态危害指数的平均贡献比例,可以看出,Cd的潜在生态危害系数对洪泽湖表层沉积物综合潜在生态危害指数的贡献最大,达到了81%,其次是Pb、Ni。

图3各重金属潜在生态危害系数的平均贡献百分数

3.3相关性分析

由表4可知,Cu与Ni、Zn、Cr之间、Ni与Zn、Cr之间、Zn和Pb、Cr之间呈极显着正相关(p

4结语

洪泽湖东部和北部湖区Cu、Ni、Zn、Cr污染较西部湖区严重,Cd污染主要分布在西部湖区。全湖区Cu污染较轻,各点Cu含量均低于土壤环境质量一级标准值;除北部湖区以外,东部及西部湖区Zn、Cr的含量在一级标准值范围内;全湖区Pb污染较严重,除东部湖区个别点外,其余各点的含量均属于二级标准;Cd的污染程度大小为:西部湖区>东部湖区>北部湖区。

Cu、Ni、Zn、Pb、Cr的潜在生态危害都很小,为低值。潜在生态危害较大的金属是Cd,西部湖区Cd的潜在生态危害指数与其他湖区相比较大。全湖平均潜在生态指数属于低风险,西部湖区潜在生态危害指数较高,Cd的潜在危害也最大,应引起极大重视。

参考文献:

[1]

王苏民,窦鸿身.中国湖泊志[M].北京:科学出版社,1998.

[2] Wojciech T.Lithological and geochemical record of anthropogenic changes in recent sediments of a small and shallow lake (Lake Pusty Staw,northem Poland) [J].Journal of Paleolimnology,2005,33(3):313~325.

[3]刘恩峰,沈吉,朱育新,等.太湖沉积物重金属及营养盐污染研究[J].沉积学报,2004,22(3):508~512.

[4] Olivares S,Rieumont D,De La Rosa,et al.Assessment of heavy metal level in Almendares River sediments-Havana City,Cuba[J].Water Research,2005,39(16):3 945~3 953.

[5] 贾振邦,赵智杰,杨小毛,等.洋涌河、茅洲河和东宝河沉积物中重金属的污染及评价[J].环境化学,2001,20(3):212~219.

[6] 宋静,骆永明,赵其国,等.沉积物-水界面营养盐释放研究I.根际土壤溶液采样器在底泥氮释放研究中的应用[J].土壤学报,2000,37(4):515~520.

[7] 范成新,朱育新,吉志军,等.太湖宜漂河水系沉积物的重金属污染特征[J].湖泊科学,2002,14(3):235~241.

[8] 田娟娟,杜慧娟,潘秋红,等.电热板消解与密闭罐消解对土壤中49种矿质元素ICP-MS法检测的影响[J].分析测试学报,2009,28(3):319~325.

[9]Arunachalam J,Emons H,Krasnodebska B.Sequential extraction studies on homogenized forest soil sample [J].Sequential Total Environment,1996,24(181):147~159.

重金属污染危害第5篇

关键词 重金属污染;蔬菜;现状

中图分类号 X820.4 文献标识码 A 文章编号 1007-5739(2013)22-0208-03

Research Progress of Heavy Metal Pollution in Vegetables

YAO Li-xia RU Qiao-mei HE Liang-xing

(Yuhang District Agro-product Monitoring Center in Hangzhou City of Zhejiang Province,Hangzhou Zhejiang 311119)

Abstract With the ever serious environmental pollution,vegetables have been subjected to varying degrees of pollution. Heavy metal is one of the important factors,which affect vegetable growth and human health. The paper studied aspects of hazards of heavy metal pollution,evaluation of heavy metal contamination in vegetables,and status quo of vegetables polluted by heavy metals in China. It also discussed vegetables polluted by heavy metals in the future and prospects,which would provide reference and experience for the research on vegetables polluted by heavy metals.

Key words heavy metal pollution;vegetables;present situation

重金属是指密度在5×103 kg/m3以上的金属,如金(Au)、银(Ag)、镉(Cd)、汞(Hg)、铬(Cr)、铜(Cu)、铅(Pb)等。部分重金属通过食物进入人体,对人体正常生理功能造成干扰,危害人体健康,被称为有毒重金属,如锌、汞、铅、铬、砷、锡、镉等。

随着农业生产中化肥、农药等的大量使用,土壤、水体的重金属污染逐渐加重,不仅影响植物生长发育,而且在植物叶、茎、根、籽实中大量积累。蔬菜作为人们日常摄入量最大的食物之一,含有丰富的膳食纤维、维生素、必需矿质元素等,但食入重金属超标的蔬菜会对人体健康造成极大危害,其危害具有一定的隐蔽性,一般不会发生急性中毒,只是在人体中不断积累,逐渐危害人体健康。近年来,监测、防治重金属污染已成为各国普遍关注的热点问题。蔬菜作为人类日常生活摄入量较大的食品之一,分析、评价其受重金属污染状况,对保障人们的饮食安全、促进蔬菜生产具有重要意义。

1 重金属污染的危害

铬、锌、汞、铅、砷、锡、镉等有毒重金属中,对人体危害最大的是铅,毒害人体各系统,尤其常使造血系统、神经系统、血管等发生病变。人体摄入过量的铅不仅会抑制血红素的合成,降低红细胞中血红蛋白量,导致人体出现贫血,损伤中枢神经系统及其周围神经,轻度中毒时,出现失眠、头痛、记忆减退、头晕等症状。特别是对于大脑处于发育期的儿童来讲,更容易受铅的危害,严重影响儿童的智力发育和行为。

有毒重金属中危害人类健康的其次是砷、汞。砷大都以烷基砷、无机砷的形态存在,2种类型的砷差别较大。无机砷毒性较大,有机砷毒性较小,其中砷糖甚至被认为无毒。长期接触砷,会引起细胞中毒,诱发恶性肿瘤,其还能透过胎盘损害胎儿。无机砷是致癌物质,常诱发肺癌、皮肤癌。汞容易被植物吸收,通过食物进入人体,也可以蒸汽形式进入人体,危害人体健康。汞毒性因形态不同存在较大差异,其中甲基汞毒性最大,容易被人体吸收,在肾、骨髓、心、脑、肝、肺等部位蓄积,使肾、神经系统、肝脏等产生不可逆的损害。另外,金属汞、无机汞通过水中厌氧微生物甲基化可转化为甲基汞危害。

相对铅来说,镉容易被植物吸收,但其不容易造成植物毒性,反对人体容易造成毒害,具有致畸、致癌、致突变等作用。镉进入体内可损害血管导致组织缺血,损伤多系统,干扰钴、铜、锌等代谢,阻碍肠道吸收铁,抑制血红蛋白的合成,抑制肺泡巨噬细胞的氧化磷酰化的代谢过程,对肾、肺、肝造成损害。

铬的急性中毒会对皮肤造成刺激和腐蚀,使皮肤糜烂或变态反应发生皮肤炎。亚急性或慢性中毒会引起咽炎、鼻炎、支气管炎等。另外,铬还有致畸变、致癌变、致突变作用。六价铬和三价络均有致癌作用,且六价铬的毒性比三价铬大100倍,某些铬化合物的致癌性是目前世界公认的,被称为“铬癌”。

可见,重金属对人体健康的危害具有富集性、隐蔽性、不可逆性,且其污染一旦出现就难以逆转,治理非常困难,成本高。

2 蔬菜重金属污染评价

内梅罗综合污染指数是土壤或沉积物重金属污染评价中较为常用的方法。目前,该方法已在蔬菜重金属污染评价方面得到应用[1]。

(1)单因子污染指数:

Pi=■

Pi、Ci、Si分别为计算出的重金属单项污染指数、重金属的实测值、各项评价标准值。

当Pi≤1时,表示蔬菜未受污染;Pi>1时,表示蔬菜受到污染,Pi数值越大,说明受到的重金属污染越严重。

(2)尼梅罗综合污染指数:

P综=■

Pave为蔬菜各单因子污染指数的Pi 平均值,Pmax为蔬菜各单项污染指数中最大值。

通常,设定综合污染指数P综合≤0.7为安全等级,P综合≤1.0为警戒限,P综合≤2.0为轻污染,P综合≤3.0为中污染,P综合>3.0为重污染。

3 我国蔬菜重金属的污染现状

3.1 华东地区(包括山东、江苏、安徽、浙江、福建、上海市)

王淑娥等[2]调查发现济南市8种蔬菜中重金属含量均未超出无公害蔬菜限量标准。马桂云等[3]也报道盐城市区少数蔬菜受到Cd的污染。而蚌埠市市售蔬菜中,叶菜类蔬菜中主要是Pb、Cd超标,这可能与含铅的汽车尾气污染大气有关[4]。孙美侠等[5]对徐州市市场上15种蔬菜、水果进行抽样检查,测定240个样品中重金属Cu、Pb、Cd、Cr、Zn的含量状况,结果表明所测样品中仅重金属Cd、Zn有部分超标,其中Cd的污染需引起有关部门的重视。然而,厦门市售蔬菜仅部分品种如菠菜、甘蓝、花菜、萝卜的Pb超标,有潜在污染风险;大部分蔬菜中As、Hg、Cr3种重金属的含量都较低,潜在的污染风险不大[6]。许 静等[7]对福建省4个区域的4类19种蔬菜品种进行分析和评价,结果显示福建省蔬菜重金属污染主要为Cd和Pb,品种涵盖小白菜、芥菜、空心菜。林梅[8]采用原子吸收分光光度法对福州市油菜番茄茄子3种上市蔬菜中重金属Pb、Cu、Cr、Cd和微量元素Zn的含量进行了检测,并运用单因子污染评价指数进行了蔬菜重金属污染的评价,结果表明:自由集市中个别蔬菜存在Cr轻度污染,部分蔬菜存在Pb轻中度污染;从大型超市和自由集市购买的所有蔬菜样品均存在Cd含量超标现象,其中自由集市蔬菜的Cd甚至达到中度污染级;所有样品中Cu含量均低于全国代表值,Zn含量则与全国代表值相当。

3.2 华南地区(包括广东、广西、海南)

广东省蔬菜重金属调查已有不少研究报道。马 瑾等[9]报道东莞市蔬菜重金属污染以Pb的污染情况最普遍,20.9%的叶菜类蔬菜Pb含量超标。其次是Cd和Hg,分别有11.6%和2.3%的叶菜类蔬菜超标。但张 冲等[10]对东莞市主要蔬菜产区的112个蔬菜样品进行重金属污染现状调查,发现这些蔬菜受到不同程度的重金属污染,但大多数只是轻度污染,并未达到危险级别。佛山市禅城区居民食用蔬菜样品中有46.6%的蔬菜重金属含量超标,Pb和Cr超标率分别为32.9%和19.2%[11]。李传红等[12]调查表明,惠州市蔬菜重金属含量整体质量尚好,但蔬菜Cd污染较为严重,超标率为15.8%。珠海市蔬菜中Cd、Cr、Ni、Pb、Hg元素有超标情况,其中Cd元素超标率最高,需要引起有关重视[13]。秦文淑[14-15]通过对广州城区各居民菜场主要蔬菜进行采样,发现主要重金属污染为Cr、Pb、Cd,其超标率分别为38.9% 、22.2%、13.9%。利用单因子污染指数法进行了评价,发现广州市蔬菜的污染比例在50%以上,其中28.9% 为轻度污染。然而,赵 凯等发现As、Pb是广州市郊地区蔬菜中的主要污染元素,而且各类蔬菜的综合污染指数均小于1,表明绝大部分蔬菜可以放心食用。杨国义等评价结果表明,在广东省典型区域所采集的171个蔬菜样品中,有13.45%的样品受到不同程度的重金属污染,以Cd和Pb污染为主,Ni、Hg、As和Cr污染相对轻一些。

南宁市相当部分蔬菜的重金属含量超过国家规定的无公害蔬菜标准,其中污染最严重的是Hg和Pb,超标率分别达41.9%和40.4%。秦波和白厚义研究发现南宁市郊蔬菜已受Pb和Cd的污染,其中Pb的污染最重,其次为Cd污染,但未受Cr的污染。

3.3 华中地区(包括湖北、湖南、河南、江西)

刘尧兰等[16]报道环鄱阳湖区叶菜类蔬菜有2/3样品的重金属含量超标,超标率在50%以上,其中白菜Pb超标最为严重,超标率高达85.2%;单因子污染指数评价表明,环鄱阳湖区叶菜类蔬菜的安全和优良级别所占比例为66.9%,已受到一定程度的重金属污染,其中以芹菜受污染的程度最大,污染主要来源于Cr和Pb。黄石市售蔬菜重金属污染主要表现为As、Pb污染。叶菜类重金属含量最高,其次是瓜豆类,茄果类含量最低。调查的6种蔬菜中,莴笋叶和小白菜遭受到严重污染,黄瓜受到轻度污染,四季豆处于警戒水平,仅番茄和茄子是安全的[17]。

成玉梅和康业斌[18]用单因子和综合因子污染指数评价,洛阳市郊区叶菜类蔬菜重金属污染大部分已处于警戒级到轻度污染,加强蔬菜重金属污染的预防与治理十分必要。新乡市蔬菜Cd、Pb的污染明显,其中Pb污染较严重[19]。商丘市售蔬菜中存在超标的元素为Pb、Cd,Cu、Hg、Cr 含量较低[20]。沈 彤等[21]研究表明,长沙地区蔬菜中,Cr、As、Hg的含量未超标,尚未构成污染,但Pb、Cd污染严重,超标率分别为60%和51%。南昌市售蔬菜中均含有重金属Cu、Zn、Pb 和Cd,其中Cu、Zn含量较低,远低于食品卫生标准,仅部分样品存在Pb、Cd超标现象[22]。

3.4 华北地区(包括北京、天津、河北、山西、内蒙古)

中国科学院地理研究所调查认为,北京市生产的蔬菜重金属超标的占30%[23]。薄博[24]对大同县主要蔬菜产地调查研究,结果发现调查的5种蔬菜污染程度为茄子>西红柿>黄瓜>青椒=西葫芦,但均未超标,属于安全等级。对天津市郊的36种蔬菜样品进行检测,发现重金属检出率为100%,其中Cd达到警戒线水平,单项污染指数最高值达19.22,总超标率为30.41%。

3.5 西北地区(包括宁夏、新疆、青海、陕西、甘肃)

1996—1997年彭玉魁等对陕西省咸阳、西安、宝鸡等6个城市郊区的14种蔬菜进行调查研究,分析其As、Hg、Cr、Cd、Pb等污染情况,结果表明Cr、Pb在某些蔬菜中超标严重。陕西省主要蔬菜产区蔬菜重金属污染也以Pb污染为主。李桂丽等[25]调查发现西安市10种蔬菜总体合格率为83%,Pb是蔬菜中的主要污染元素,总体超标率为77.5%;Hg和Cr只在芹菜和茼蒿上出现污染,总体超标率分别为10%和2.5%。然而,马文哲等[26]调查了杨凌示范区4类9种蔬菜重金属的污染现状,发现Cr对蔬菜的污染程度最为严重,其次Pb、Cd也有一定程度的污染。

乌鲁木齐市安宁渠区蔬菜中Cd、Pb的超标率最高[27]。殷 飞等[28]报道新疆喀什市三大批发市场蔬菜的Pb、Cd、Cr、Cu 4种主要重金属含量,平均值均低于相应的食品卫生标准,只有个别蔬菜样品存在重金属 Pb、Cd 含量超标现象,超标率均不高。因此,从重金属污染这个角度来说,喀什市市售的蔬菜基本上是安全的,消费者可以放心消费。

3.6 西南地区(包括四川、云南、贵州、、重庆)

李江燕等[29]通过现场调查及室内分析,对云南省个旧市大屯镇的蔬菜重金属污染现状进行评价。当地蔬菜综合污染指数从大到小的重金属为Cd、Pb、Zn、Cu,Cd、Pb污染较严重。重庆市主城区市售蔬菜有39.2%受到重金属污染,其15.7%蔬菜处于重度污染状态[30],Cd、Pb和 Hg是主要污染元素。罗晓梅研究发现,成都地区蔬菜Cd和Pb污染严重,在检测的蔬菜样品中,Pb、Cd超标率分别为22.0%、29.4%,最高超标分别为5.60倍和2.86倍,Hg和As则无超标现象出现。

3.7 东北地区(包括辽宁、吉林、黑龙江)

周炎对沈阳市近郊受重金属污染农田上生产的大白菜进行取样分析,Cd、Pb超标率分别为58.3%、100.0%。辽宁省农业环保监测站调查发现,各种蔬菜已受重金属不同程度的污染,蔬菜综合超标率为 36.1%。

4 研究方向与展望

(1)从蔬菜重金属污染的来源及危害途径可以看出,重金属主要是通过土壤污染造成蔬菜重金属残留超标的,且由于土壤重金属污染具有不可逆、隐蔽性、滞后性、积累性和。因此,应开展菜地土壤重金属污染的调查研究及风险评估,了解土壤重金属污染的基本情况和态势,分析其空间变异与分布规律,开展土壤环境质量标准的研究和制定工作,加强无公害粮食蔬菜生产基地建设[31-34]。

(2)开展蔬菜中重金属含量与土壤中重金属及其向食物链传递关系的定量研究,同时加强蔬菜对重金属吸收积累的基因型差异研究,利用丰富的植物物种资源,研究其对重金属的吸收转运机制,以降低土壤中重金属的污染,同时筛选和培育低吸收低富集重金属的蔬菜品种,减少重金属进入食物链[35-38]。

(3)为检查蔬菜质量,我国出台相应标准,其中将重金属列入标准中优先控制的污染物之一,为蔬菜质量控制发挥了巨大作用,但仅以污染物含量作为蔬菜质量评价标准难以衡量污染物对人体健康危害的大小,因此应用健康风险评价方法评估污染物对人体健康的危害已成为趋势[39-40]。

5 参考文献

[1] 崔旭,葛元英,张小红.晋中市部分蔬菜中重金属含量及其健康风险[J].中国农学通报,2009,25(21):335-338.

[2] 王淑娥,冷家峰,刘仙娜.济南市蔬菜中硝酸盐及重金属污染[J].环境与健康杂志,2004,21(5):312-313.

[3] 马桂云,周秋华,王京平,等.盐城市区蔬菜中重金属污染调查研究[J].化工时刊,2005,19(10):13-15.

[4] 朱兰保,高升平,盛蒂,等.蚌埠市蔬菜重金属污染研究[J].安徽农业科学,2006,34(12):2772-2773,2846.

[5] 孙美侠,黄从国,郝红艳.江苏省徐州市售蔬菜和水果重金属污染调查与评价研究[J].安徽农业科学,2009,37(29):14343-14345.

[6] 汤惠华,陈细香,杨涛,等.厦门市售蔬菜重金属、硝酸盐和亚硝酸盐污染研究及评价[J].食品科学,2007,28(8):237-332.

[7] 许静,陈永快,邹晖. 福建省不同区域土壤、蔬菜重金属污染现状分析[J].福建农业学报,2011(4):646-651.

[8] 林梅.福州市上市蔬菜中重金属污染评价及防治措施[J].江西农业学报,2011,23(6):129-131.

[9] 马瑾,万洪富,杨国义,等.东莞市蔬菜重金属污染状况研究[J].生态环境2006,15(2):319-322.

[10] 张冲,王富华,赵小虎,等.东莞蔬菜产区蔬菜重金属污染调查评价[J].热带作物学报,2008,29(2):250-254.

[11] 邵昭明,欧阳静茹,张珊珊,等.佛山市禅城区蔬菜重金属污染现状及对人体健康风险分析[J].华南预防医学,2012,38(3):14-21.

[12] 李传红,朱文转,谭镇.广东省惠州市蔬菜重金属污染状况研究[J].安徽农业科学,2007,35(5):1448-1449.

[13] 胡小玲,张瑰,陈剑刚,等.珠海市蔬菜重金属污染的调查研究[J].中国卫生检验杂志,2006,16(8):980-981.

[14] 秦文淑,邹晓锦,仇荣亮.广州市蔬菜重金属污染现状及对人体健康风险分析[J].农业环境科学学报,2008,27(4):1638-1642.

[15] 秦文淑.广州城区居民食用蔬菜重金属含量现状分析[J].广东轻工职业技术学院学报,2010,9(4):17-21.

[16] 刘尧兰,陈焕晟,蒋建华,等.环鄱阳湖区部分叶菜类蔬菜重金属污染评价与来源分析[J].安徽农业科学,2011,39(20):12310-12312, 12314.

[17] 严素定,万晓琼,杨红军.黄石市几种市售蔬菜的重金属污染分析[J].湖北师范学院学报:自然科学版,2008,28(4):48-51.

[18] 成玉梅,康业斌.洛阳市郊区叶菜中重金属含量抽样分析及评价[J].广东微量元素科学,2007,14(11):60-63.

[19] 王学锋,冯颖俊,林海,等.新乡市部分市售蔬菜中重金属污染状况与质量评价[J].河南师范大学学报:自然科学版,2006,34(3):120-123.

[20] 娄淑芳,张新环,谢春,等.商丘市蔬菜重金属污染状况与质量评价[J].中国食物与营养,2010(12):18-20.

[21] ,刘明月,贾来,等.长沙地区蔬菜重金属污染初探[J].湖南农业大学学报:自然科学版,2005,31(1):87-90.

[22] 丁园,宗良纲,何欢,等.蔬菜中重金属含量及其评价[J].安徽农业科学,2007,35(33):10672-10674.

[23] 周东美,郝秀珍,薛艳,等.污染土壤的修复技术研究进展[J].生态环境,2004,13(2):234-242.

[24] 薄博.大同县蔬菜中重金属污染状况与质量评价研究[J].安徽农业科学,2009,37(14):6793-6794.

[25] 李桂丽,苏红霞,段敏,等.西安市蔬菜中重金属污染分析评价[J].西北植物学报,2008,28(9):1904-1909.

[26] 马文哲,王文光,吴春霞,等.杨凌示范区蔬菜中重金属污染分析与评价[J].北方园艺,2012(17):46-48.

[27] 胡慧玲,玉素甫·艾力,阿布力米提·阿布都卡德尔.乌鲁木齐市安宁渠区蔬菜中重金属的分布特征研究[J].新疆大学学报:自然科学版,2003,20(3):260-263.

[28] 殷飞,王晶.喀什市上市蔬菜重金属污染现状分析及评价[J].安徽农业科学,2010,38(23):12671-12672,12675.

[29] 李江燕,杨永珠,李志林,等.云南个旧大屯镇蔬菜重金属污染现状及健康风险评价[J].安全与环境学报,2013,13(2):91-96.

[30] 张宇燕,陈宏.重庆市市售蔬菜中锌、砷、汞的污染现状评价[J].三峡环境与生态,2012,34(1):47-51.

[31] 丁玉娟,林昌虎,何腾兵,等.蔬菜重金属污染现状及研究进展[J].贵州科学,2012(5):78-83.

[32] 梁称福,陈正法,刘明月.蔬菜重金属污染研究进展[J].湖南农业科学,2002(4):45-48.

[33] 王旭.广东省蔬菜重金属风险评估研究[D].华中农业大学,2012.

[34] 任艳军,马建军,杜彬,等.秦皇岛市根菜类蔬菜中重金属含量及健康风险分析[J].河北科技师范学院学报,2013(2):1-6.

[35] 杨国义,罗薇,高家俊,等.广东省典型区域蔬菜重金属含量特征与污染评价[J].土壤通报,2008(1):133-136.

[36] 汪琳琳,方凤满,蒋炳言.中国菜地土壤和蔬菜重金属污染研究进展[J].吉林农业科学,2009(2):61-64.

[37] 杨胜香,易浪波,刘佳,等.湘西花垣矿区蔬菜重金属污染现状及健康风险评价[J].农业环境科学学报,2012(1):17-23.

[38] 谢华,刘晓海,陈同斌,等.大型古老锡矿影响区土壤和蔬菜重金属含量及其健康风险[J].环境科学,2008(12):3503-3507.

重金属污染危害第6篇

湖泊污染物重金属与有机污染物不同,不能通过自然降解过程分解,在生物活动过程中富集后毒性更大[1]。湖泊重金属主要来源于流域土壤岩石的风化、城市生活污水和工矿业废水的排放[2-5],排入湖泊的重金属经过悬浮物沉降而驻留在沉积物中,成为二次污染源[6-7]。悬浮物是一种由无机、有机和生物碎屑、浮游动植物、细菌和其他能被0.22μm或0.45μm滤膜截留的颗粒物组成的混合体,不仅影响水生生态系统中重金属的活化和迁移,而且影响重金属在水体、沉积物和食物链之间的相互转化,是一个非常关键的化学组分,含有其他水中溶解态物质难以凸现的环境和地球化学信息[4-5]。在江西省经济快速发展的过程中,鄱阳湖水环境受到了不同程度的重金属污染[2-3],对流域水环境和人类生命构成了潜在的危害。关于鄱阳湖及其流域重金属污染的研究很多,但大多集中在沉积物污染方面[6-9],单纯针对悬浮物中重金属污染的研究则较少[10-11]。对悬浮物的研究可以较全面地了解水环境的污染状况,对揭示水环境的污染效应与水体净化规律有着极其重要的意义。本文从悬浮物的角度进行鄱阳湖重金属污染研究,为了解鄱阳湖污染状况及重金属在湖泊中的环境行为提供依据。 1材料与方法 1.1样品采集 鄱阳湖重金属污染目前仅限于局部范围[6],采样点采用网格布点法布设,每个点平均采3个样,对其进行平行测定,因此样品具有较好的代表性。采样于2011年2月枯水期进行,采样点均采用全球定位系统(GPS)定位,如图1所示。悬浮物样品在距水面30cm以下处采集,除去漂浮或浸没的树枝、枯叶等杂质,在全玻璃微孔滤膜器中减压抽气进行过滤,提取悬浮物(GB11901-89)。样品采集后立即用HACH现场参数仪测定水温、溶解氧、pH值和电导率,水样现场过0.45μm滤膜后,装入聚乙烯瓶中加优级纯浓硝酸保存,带回实验室采用石墨炉原子吸收法(PEAA800)测定。水体中重金属铜(Cu)、铅(Pb)、锌(Zn)、镉(Cd)和铬(Cr)的含量采用原子吸收分光光度法测定。 1.2潜在生态风险评价 采用瑞典科学家Hakanson于1980年提出的潜在生态风险指数法对鄱阳湖重金属污染进行生态风险评价[12],生态-危害指数RI为:式中,Ci为污染物的实测浓度,mg/kg;Cin为鄱阳湖重金属的背景参比值[13],Cif为单个污染物污染指数,Tir为污染物毒性响应参数,Eir为单个污染物的潜在生态风险。参考前人研究成果,结合鄱阳湖沉积物的性质和污染水平,具体分级如表1所示。 2结果与讨论 2.1悬浮物中重金属的分布 实测悬浮物重金属含量见表2。由表2可知,南、北湖区悬浮物重金属Cu、Pb和Cr平均含量的差异较大,Cd、Zn平均值相近,分别为0.95,0.93mg/kg。根据不同种类重金属含量范围,结合水流从南湖区向北湖区流动特征来看,含量变化分布情况一致:南湖区大于北湖区。Cu的最高值出现在南湖区,为1045mg/kg,含量分布不均,最小值为16.5mg/kg;Pb北湖区最大值是最小值的30多倍,南湖区超过100倍;Cd的最小值南、北湖区相差不大,南湖区出现最大值;Cr的最大值出现在北湖区;且北湖区含量普遍比南湖区高;Zn在南、北湖区分布均匀,含量相近。由表3可以看出,悬浮物中Cu、Pb、Cd、Cr、Zn间正相关性显著,Cr与Cu及Cd的相关性系数高达1,表明Cu、Pb、Cd、Cr、Zn具有显著的同源性。鄱阳湖重金属污染主要来自各支流水系,污染严重区域主要是各大入湖口处:信江入湖口、饶河入湖口、南湖区的三江口以及东湖区的柳树湾等区域。信江和饶河入湖口处主要污染物为Zn、Cu、Pb,其中Cu主要是由乐安江中下游的德兴铜矿和信江中游的永平铜矿开采产生的含重金属的酸性废水排放所致[13];Zn和Pb为Cu的伴生矿,污染也相对严重;部分Pb是沿江城市排放的生活污水及工业废水所致[9]。南湖区三江口是3条主要支流———赣江、抚河和信江汇合处,各种重金属污染均最严重,原因与信江中游地区永平铜矿废水、南昌市大量工业废水和生活污水排入赣江以及水土流失土壤中的重金属有关[14]。悬浮物中各种重金属含量的空间分布特征与鄱阳湖入流水系有密切关系,流域内有矿产工业的支流如信江、饶河等均分布在南湖区,致使鄱阳湖南湖区与北湖区悬浮物重金属含量差异性明显。 2.2悬浮物、沉积物、水体重金属含量对比 对沉积物、水体、悬浮物中重金属的含量以及最大值、最小值及平均值的分析发现,除了Zn以外,其余金属最大含量均出现在悬浮物中,最小含量在悬浮物与水体中均有出现,可见重金属的分布不仅与其赋存的介质有关,与元素本身相关性也很大(见表4)。一般悬浮物的重金属含量比沉积物高几倍,是水体溶解态重金属的几百倍[15],鄱阳湖中悬浮物与沉积物和水体的比值为0.04~976.91,0.34~2824.86,说明其悬浮物中重金属含量很高。水体中的重金属污染物不易溶解,绝大部分迅速由水溶物转入固相物,并随水运移,当悬浮物负荷超过搬运能力时,便沉积进入底泥。因自然、生物、人为活动等因素驱动,沉积物再悬浮使得被沉积物颗粒吸附和结合的重金属可能通过吸附-解吸平衡和氧化还原反应而释放进入上覆水体,导致水体普遍出现重金属污染问题。在此迁移转化过程中,悬浮物是重金属元素的主要迁移载体。悬浮物主要由黏土、细碎屑等物质组成,重金属元素在悬浮物中可呈吸附态、矿物态等形式。悬浮物中重金属元素含量受悬浮物的矿物组成、重金属元素存在形式受流域地质背景等综合因素制约。鄱阳湖是江西省的内陆湖泊,其地貌主要组成物质是变质岩和花岗岩,岩溶地貌主要为沉积岩,在水体的迁移转化过程中,重金属在沉积物、悬浮物、水体三相中不断进行着交换吸附作用,维持动态平衡,但悬浮物中重金属含量最高。 2.3潜在生态危害指数评价 将Hakanson潜在生态危害指数用于水体悬浮物重金属污染评价时,所选择的参比值差别较大。悬浮物是水体污染物迁移的主要载体,主要来源于流域土壤岩石的风化产物、动植物残骸、工业废水、废渣、废气中的颗粒物,沉积物则是污染物的主要储存场所。因此背景值既可选用全球沉积物重金属的平均背景值[16],也可用国家土壤环境质量标准(GB15618-1995)或当地土壤重金属背景值[17]。本文选用鄱阳湖沉积物中的重金属背景值作为背景参考值,见表5。由于吸附富集作用,悬浮物重金属含量将远超于其背景值,因此将表1中的生态危害指数做了相应的调整,以小于250为轻度、250~500为中度、500~1000为强度、大于1000为极强。以此等级划分得到鄱阳湖悬浮物重金属的生态危害系数见表6。由表6可见,鄱阳湖近一半区域重金属污染达强度级别,其中2/3分布在南湖区。南湖区集中了鄱阳湖的所有入湖支流,污染物进入湖区时,大量富集于悬浮物中。鄱阳湖重金属单元素危害系数最大的是Cd,其次是Cu、Pb,最小的是Zn,这种现象与5条支流流域内的工业矿业类型有关。#p#分页标题#e# 3结论 (1)鄱阳湖悬浮物中重金属分布南、北湖区差异大,尤其是Cu、Pb和Cr;Cu、Pb、Cd、Cr、Zn间相关系数大,像Cr与Cu及Cd的相关性系数高达1,说明这类元素同源性显著。(2)鄱阳湖中悬浮物重金属含量平均值与沉积物和水体的比值为0.04~976.91,0.34~2824.86,说明其悬浮物中重金属含量很高。(3)鄱阳湖一半的区域重金属污染达强度级别,其中大部分分布在南湖区;重金属单元素危害系数最大的是Cd,其次是Cu、Pb,危害最小的是Zn。

重金属污染危害第7篇

工业园区土壤重金属背景值的测定结果见表3。由表3可知:Cu为36.2(14.5~85.0)mg/kg,Zn为118(60.4~262)mg/kg,Pb为49.2(25.1~112)mg/kg,Cr为40.6(23.8~59.4)mg/kg,Cd为0.125(0.0300~0.310)mg/kg,Ni为15.3(9.15~25.2)mg/kg。与国家土壤质量二级标准限值和河南省土壤元素背景值相比,工业园区土壤重金属Cu、Zn、Pb、Cr、Cd、Ni的含量分别是国家土壤二级标准限值的0.362、0.393、0.141、0.116、0.125、0.255倍,是河南省土壤元素背景值的1.69、1.81、3.42、0.757、1.39、0.614倍。其中重金属Cu、Zn、Pb、Cr、Cd、Ni的含量最高值分别是国家土壤二级标准限值的0.850、0.873、0.320、0.170、0.310、0.420倍,是河南省土壤元素背景值的3.97、4.02、7.78、1.11、3.44、1.01倍。可见,濮阳工业园区土壤重金属含量满足国家土壤质量二级标准限值,但与河南省土壤重金属背景值相比,工业园区土壤重金属Cu、Zn、Pb、Cd出现明显的富集特征,且富集程度从高到低的排序为Pb>Zn>Cu>Cd,尤其是Pb的富集程度最高。变异系数反映了总体样本中各采样点的平均变异程度。从表3中的变异系数可以看出,重金属含量变异系数高达21.5%~62.4%,其中,以Cd和Pb的变异系数最大,Cr和Ni最小,Cu和Zn居中并且数值相近,说明工业园区重金属Cd、Pb、Cu、Zn的分布不均匀,受外界干扰比较大,说明该区土壤正在受人类开发活动的影响,土壤质量演变值得关注。

2工业园区土壤质量评价

2.1污染负荷指数法评价

以河南土壤重金属背景值为评价标准,采用污染负荷指数法对工业园区土壤质量进行评价,其结果见表4。由表4可以看出:工业园区内Cr和Ni污染等级为0,污染程度为无污染;Cu、Zn、Cd污染等级为Ⅰ,污染程度为中等污染;Pb污染等级为Ⅲ,污染程度为极强污染;土壤中重金属污染程度从重到轻顺序为Pb>Zn>Cu>Cd。工业园区点位PLI为0.710~2.42,PLIzone为1.26,污染等级为Ⅰ,污染程度为中等污染,表明工业园区土壤重金属总体呈上升趋势。

2.2潜在生态危害指数法评价

根据计算公式,以河南土壤重金属背景值为评价标准,工业园区土壤中重金属的Eir和污染指数RI的计算结果见表5。由表5可知,Eir为0.046~1.81,远远小于40,生态风险程度较低;RI为0.344~1.06,均值为0.563,远远小于150,属轻微生态危害。总体而言,工业园区土壤重金属潜在生态危害程度等级为轻微。

2.3评价结果比较

经2种评价结果的分析比较(表6)可知,濮阳工业园区土壤中Zn为首要污染因素。随着工业经济发展,同时也要关注Pb、Cd含量变化趋势,避免造成土壤重金属污染。

3结论

重金属污染危害第8篇

一、指导思想

以邓小平理论和“三个代表”重要思想为指导,深入贯彻落实科学发展观,加大产业结构调整力度,严格重金属行业环境准入,健全法律规范和标准体系,完善政策措施,强化环境执法监管,提高健康危害监测和诊疗能力,依靠科技进步,有效控制重金属污染,切实维护人民群众利益和社会和谐稳定。

二、工作目标和重点

(一)工作目标

对全市范围内重金属污染物排放企业及其周边区域环境隐患进行全面排查,基本摸清我市重金属污染情况,确定重点防控区域、行业、企业和高风险人群,妥善解决危害群众健康和生态环境的突出问题。到2012年,建立起较为完善的重金属污染防治体系、事故应急体系、污染与健康风险评估体系。到2015年,重点防控的重金属污染物排放量在2007年基础上削减20%,历史遗留问题初步得到解决,重点防控企业实现稳定达标排放,重点防控行业重金属污染防治水平明显提高,重点防控区域环境质量明显改善,全市重金属污染得到有效控制,保障全市生态环境安全。

(二)工作重点

重点防控污染物:铅、汞、镉、铬和砷。

重点防控区域:无锡金属表面处理科技工业园区,无锡高新技术产业开发区,重金属污染排放相对集中的主要入湖河道、重点河流等。

重点防控行业:金属表面处理及热处理加工,通信设备、计算机及其他电子设备制造业,电池制造,化学原料及化学制品制造业,有色金属冶炼及延压,皮革及其制品业以及涉处理重金属废物的危险废物持证经营单位。

重点防控企业:具有潜在环境危害风险的重金属排放企业。

三、主要工作

(一)全面排金属污染企业,建立健全基础资料

按照环保部等九部门《关于深入开展重金属污染企业专项检查的通知》(环发〔2009〕112号)要求,开展重金属污染物排放企业专项排查,全面排查涉铅、汞、镉、铬和砷企业,掌握全面的重金属污染排放情况并登记造册,明确工业企业重金属污染重点防控区域、重点防控行业分布状况、以及具有潜在环境危害风险的重点防控企业数量和分布状况。各地区调查工作于2011年6月底前完成报市环保局备案。

(二)制定和实施重金属污染防治规划和整治计划

按照“谁污染、谁治理”和统筹规划、突出重点、分期实施的原则,组织编制我市及2个重点防控区的重金属污染综合防治规划,划定重点防控区域,明确近期和远期的防治目标、任务和政策措施,重点解决污染严重、威胁人民群众健康的重金属排放企业污染问题,要把区域总量削减目标分解落实到具体企业、具体项目之中。全部3个规划在2011年6月底前经市政府批准报省环保厅备案。各地区、各部门要按规划总体要求认真制订年度重金属污染防治工作计划,并认真组织实施。建立规划实施的中期评估、终期考核和动态调整机制,增强规划的指导性和操作性。

(三)限期完成重金属污染物排放企业专项整治任务

将重金属污染防治列为今年六大环保专项行动的重点内容,加大现场检查力度,集中整治,严格标准。要按照市政府《关于全市涉铅、电镀行业专项整治工作推进会议纪要》(锡政会纪〔2011〕118号)文件精神,抓好整治,按时限完成整治任务。深入推进各重金属排放企业特征污染物定期监测报告制度,督促企业及时向环保部门和社会公布企业污染物排放情况。集中对重金属排放企业开展专项检查,重点突出审查环保手续、排查环境隐患、检查治污设施、督促达标排放、检验应急预案等主要内容,全面整治、不留死角。对于不符合产业政策的企业,坚决予以取缔;对于不能稳定达标的企业,坚决限期整改;对于污染隐患严重和存在重、特大环境风险的企业,坚决予以关停。对有环境劣迹的企业上市或再融资,两年内环保部门不得出具审查通过的意见。

(四)加强政策引导,进一步优化产业布局

鼓励并引导涉重金属企业实施同类整合和园区化集中管理,推进涉重企业入园进区。根据经济发展水平和产业特点,统筹规划设立专业重金属生产片区,并报省相关部门批准。今后涉及重金属的铅酸蓄电池、电镀、冶炼、化工类项目不得在专业生产区外新建和扩建,区外现有项目凡位置不当、防护距离不足,或者有其它群众反映强烈的问题的,要抓紧分批关闭或搬迁。根据《无锡市产业结构调整指导目录》,制定和实施有利于环保产业发展、有利于重金属污染防治的宏观经济政策和项目管理措施。鼓励发展低污染、低能耗、清洁生产、水平先进的高新技术产业进入无锡。进一步扩大重点防控行业落后产能和工艺设备的淘汰范围,制定和完善重点防控行业市场准入条件,控制和削减企业污染排放总量。

(五)强化环保准入,严格环保审批

加大落后产能淘汰力度,依法淘汰一批工艺设备落后、污染严重而又治理无望的企业,促使其关停、并、转、迁。实施污染防治绩效评估,限期改造和升级企业的生产工艺和治理设施,实现重污染行业达标排放和污染减排。进一步提高涉及重金属生产企业在节能、环保、安全、土地使用和职业健康方面的准入条件,严格控制我市重金属污染物排放项目的总体规模,严格限制排放重金属污染物的投资项目。严格实行建设项目环评前置审批制度,积极引导全市各部门按照条件严格审批重金属污染重点防控行业的投资和建设。金属表面处理及热处理加工业、含铅蓄电池制造业、化学原料及化学品制造业、重金属冶炼业等项目的核准(备案)由本市以上投资主管部门负责,各市(县)、区一律停止审批;实施涉重金属产业准入公告制度,遏制低水平重复建设,防止新增落后产能;试行重点防控的重金属污染物排放总量控制制度;重点防控区域要制定并严格执行区域环境准入政策。对涉重企业定期开展环境影响评价后督查。

(六)实行强制性清洁生产审核,大力推行清洁生产

根据《中华人民共和国清洁生产促进法》的要求,制定《无锡市重污染企业强制性清洁生产审核方案》,对全市所有涉重金属污染企业实施强制性清洁生产审核,分批次开展强制性清洁生产审核。涉铅企业必须在2011年底前完成第一轮审核工作,以后每两年开展一次。积极推进生产工艺和污染治理工艺升级改造,大力推广清洁生产技术及其他先进技术。2015年底前,所有审核企业要达到国家相关行业二级以上清洁生产技术指标的要求。大力发展循环经济,推动含重金属废弃物的减量化和循环利用。

(七)加强重金属污染防治监测,强化安全建设

进一步完善监测网络,加强对河流和土壤中重金属指标的监测,加强对铅、六价铬、汞、镉、砷等重金属项目的监测力度,定期监测与加密监测相结合。加强在线监控,年内开展涉重企业在线监控系统试点,逐步建立重金属污染源的在线监控体系;提升监管执法水平,将重金属污染监控信息化建设作为环境管理电子政务综合信息平台及环境监管电子政务应用系统建设重要内容,完善重金属污染监控数据的传输、管理、分析、审核与体系。加强重金属污染风险预警和应急体系,加强重金属污染监测和应急能力建设,储备必要的应急物资,提高应对突发事件的能力和技术水平。制定重金属污染突发事件应急预案,建立相应的应急管理体系和快速反应机制,组织开展应急培训和演练,提高应急响应能力。

根据重金属重点污染源的分布与污染现状,加强对重点防控区域内食品和生活用饮用水的重金属监测,对重点防控区高风险居民实施定期健康体检,完善重金属污染健康监测网络和报告制度,建立重金属污染健康危害预警体系,加强重金属健康危害与防护的宣传工作,依法妥善处理重金属污染引起的健康危害事件。

四、保障措施

(一)加强组织领导,建立协调联动机制

成立由分管副市长担任组长的市重金属污染防治工作专项行动领导小组,负责全市专项行动的组织领导;下设领导小组办公室(设在市环保局)负责日常协调工作。市委宣传部、市发改委、经信委、教育局、科技局、环保局、财政局、国土局、水利局、商务局、城管局、市政园林局、农委、卫生局、工商局、安监局等有关部门为成员,协调解决重金属污染防治工作中的重大问题。

(二)建立考核体系,明确责任分工,落实责任追究制度

将重金属污染防治成效纳入本市经济社会发展综合评价体系,作为政府领导干部综合考核评价和企业负责人业绩考核的重要内容,对未完成任务以及发生重特大环境污染事故的必须追究相关人员责任,并暂停该区域新增重金属污染物排放建设项目的审批。各市(县)、区政府、各有关部门要按照责任分工互相协调,切实履行职责,做好本系统、本行业、本领域的重金属污染防治工作。

(三)完善政策法规体系,推行污染责任保险制和信用机制

积极推进无锡市重金属污染防治工作法律法规建设、完善土壤污染防治、有毒有害化学品环境管理、重金属污染防治及污染损害纠纷的法律法规,为我市重金属污染防治工作提供法规依据。推进环境污染损害鉴定评估工作。制定完善《无锡市环境污染责任保险工作实施方案》,将涉重金属污染的主要企业纳入环境污染责任保险工作范围,将重点防控企业列为实施重点。以环境风险评估制度为核心,建立较为完善的企业环保诚信档案,并与企业环境信息强制公开、上市环保核查、企业信用信息、绿色信贷挂钩,实现风险与信用的融合。

(四)强化科技支撑,加强重金属污染防治技术研究与示范推广

加大对重金属污染防治工作的资金投入,对重金属污染防治、修复技术、重金属与人体健康关系等项目,给予优先支持。充分利用在锡大专院校、科研机构的技术力量,开展重金属污染防治工作技术研究;鼓励环保企业加大重金属污染防治技术研发力度,推动重金属技术攻关,加快环保企业重金属污染防治技术的创新和产业化步伐。积极引进先进技术和管理经验。开展交流合作,积极引进国内外先进的重金属污染防治环保技术和管理经验,加强对引进的环保关键技术的消化吸收和再创新工作。