首页 优秀范文 硬件设计论文

硬件设计论文赏析八篇

时间:2023-03-24 15:13:58

硬件设计论文

硬件设计论文第1篇

计算机主要包括硬件和软件两个组成部分,硬件是计算机固定装置的重要组成内容,包括主板、电脑键盘、光驱、监视器、硬盘等,而需要维护的设备包括显示器、主板、硬盘等。只有做好维护工作,才能确保硬件设备性能良好,促进其作用有效发挥,满足人们使用计算机的需要。

(1)显示器维护。通常显示器的使用年限为5-6年,使用过程中,如果忽视维护和保养,容易出现显示器被烧坏的情况。为此,在日常维护过程中,要保持显示器一定的湿度,清洁屏幕表面时,使用蘸有中性液的软布进行,并注意用力适中,避免用力过大而损坏屏幕。

(2)主板维护。主板是计算机非常重要的硬件设备,一般来说,主板使用年限为十年,如果忽视保养和维护,往往会降低使用寿命。但在日常使用过程中,往往忽视对主板的清理工作。事实上,主板清理工作量少,使用者应该结合具体需要做好清理工作,根据主板运行情况更换CPU散热器的散热膏,并对散热器里面的风扇添加机油。要合理控制主板温度,确保温度正常,从而更好运行和发挥作用。(3)硬盘维护。硬盘是计算机数据存储的容器,如果硬盘出现故障,不能正常运行和工作,不仅影响整个计算机的正常运行和工作,还会导致数据丢失,给用户带来较大损失。因此,做好硬盘的日常维护工作显得十分必要。计算机平时使用过程中,不得任意挪动硬盘,硬盘读写过程中,有着非常大的数据输送量,使用时如果任意挪动硬盘,会导致数据丢失。硬盘运转时会发生声响,长期下来往往会导致硬盘损坏。因此,硬盘使用时可以垫上橡胶垫,尽量减少共振现象,达到有效保护硬盘的目的。

2计算机技术在硬件设备修护的应用

为减少硬件设备故障,促进计算机更好运营和工作,日常维修工作中,离不开计算机技术的应用。同时,为促进计算机技术得到更为有效的应用,提高设备维护水平,笔者认为今后应该采取以下有效对策。

(1)坚持正确的维护原则。为实现对硬盘的有效保护,日常维护工作中要坚持先软后硬、先易后难、由外到内原则,按照这个目标和流程做好维护工作,实现对故障的有效处理,将存在的隐患消灭在萌芽状态,实现对故障的有效预防,促进计算机更好运营和工作。

(2)掌握有效的维护方法。在坚持维护原则的前提下,还要根据具体需要,综合采取有效方法,及时发现和排除故障,为硬件设备工作效率提高奠定基础。①主机维护方法。主机常见故障类型为无法加电、开机后无法显示、死机、无法进入工作系统等。针对这些问题,维护中要坚持望、闻、听、切原则,通过望检测设备外形是否变形,指示灯是否正常闪动,机箱内部接线是否断裂,通过闻来检查设备是否有异常味道出现,听来检查计算机是否存在噪音,切来检查温度是否超高,各部件是否存在异常现象,内存所在位置是否正确。综合应用上述方法将主机的故障及时排除,对存在的问题立即采取措施处理,实现确保主机有效运行的目的。②显示器维护方法。显示器常见问题为黑屏或无法显示,需要考虑的问题是,是否由潮湿或散热性能差导致问题出现。出现黑屏现象时,首先要检查显卡的性能,如果更换之后仍然出现问题,需要检查是否由潮湿问题导致黑屏。检查主机分系统、硬盘、软盘驱动系统之后,如果仍然出现黑屏现象,这时需重点检查显卡散热器情况,查看散热风扇电源是否存在松动现象,如果出现松动情况,需要对电源线进行固定,从而有效排除故障。③主板维护方法。常见问题为计算机运行1min后自动停止,计算机没有出现任何故障,导致该问题出现的原因主要是主板问题。维护中要查看计算机电源是否坏了,机箱开关是否连接好,然后仔细观察计算机内部情况,如果主板和机箱底部缺少铜柱,使得主板与机箱直接接触,会导致短路现象发生。④内存维护方法。内存故障表现为启动后计算机没法正常显示,常见故障原因为内存条和插槽接触不良,需要将内存条重新插入槽内,或者更换插条,并清理插槽。

3结语

硬件设计论文第2篇

关键词:地方院校;课程体系;教学改革

中图分类号:G642文献标识码:A文章编号:1009-3044(2008)27-2020-02

Teaching Reform and Practice of Computer Hardware Courses in Local College

LIANG Yan-lai, LIU Chao

(Dept. of Math & Computer Science, Yulin Normal' College, Yulin 537000,China)

Abstract: By analysis on problems existing in computer hardware courses teaching, a reasonable computer hardware course system was rebuilt, in view of local fact and social demand. Some feasible advice was given on teaching reform and practice of computer hardware courses, from such aspects as teaching contents, teaching means, teaching methods to improve the teaching quality.

Key words: local college; course system; teaching reform

1 引言

随着计算机科学技术的发展,计算机应用领域正在不断向生产生活的各个领域扩展渗透,尤其是各种电子电器产品的智能化发展,使得近年来IT企业对计算机硬件系统设计及开发人员的需求急剧增加。然而目前大多数高校(尤其是地方院校),计算机硬件课程教学相对薄弱,培养的计算机硬件人才无论从数量还是质量上,均无法满足人才市场需求。因此非常有必要对地方院校计算机硬件类课程进行改革与实践,使其既能适应地方实际又能满足社会需求。

2 重视硬件教学

截止到2004年初,我国普通高校总数为1683所,本科学校679 所,505所开设有“计算机科学与技术”专业,是全国专业点数之首[1];其中,这505个计算机专业中有接近一半是1994年后开办的地方新升本科院校。由于计算机专业建设的数量大、任务重、时间紧,导致专业建设者产生功利思想和短期行为。计算机硬件课程不仅难教难学,而且对于硬件设备和实验条件有较高要求,教学成本远远高于计算机软件课程教学,因此形成了计算机专业建设“重软轻硬”和师生教学“喜软怕硬”的畸形发展现象,这在经济条件和师资力量较差的地方院校中表现尤为突出。

然而计算机是由硬件和软件组成的,缺了任何一样都无法运行。不重视计算机硬件教学与科研的结果之一,就是近年来计算机软件人才相对过剩,硬件人才供不应求。另外一个结果就是,目前我国使用的计算机核心部件“芯片”几乎都是从国外大公司进口的,如联想等公司的产品,用的都是英特尔公司的“奔腾处理器”。核心器件严重依赖国外芯片制造商,这给国家信息安全造成了严重隐患。因此,我国计算机界的权威专家多次强调呼吁加强计算机硬件的科学研究和人才培养。令人欣慰的是,中科院计算技术研究所于2002年研制成功中国第一款CPU芯片“龙芯Ⅰ号” [2],从而结束了中国人只能用洋人的CPU造计算机的历史。

3 优化教学内容

计算机硬件系列课程教学内容目前存在的突出问题有:软硬件分离,知识不能融会贯通;急功近利,理论基础不扎实;脱离实践,理论不能应用于实际;知识陈旧,远远落后于计算机硬件技术的迅猛发展。因此要从系统性、基础性、应用性和先进性等方面对硬件课程教学内容进行选取和调整,将技术已经落后或者使用较少的内容从课程中删除或压缩,将最新技术发展内容及时补充到课程体系中。

3.1 重视系统性

由于种种原因,计算机专业现有课程体系软硬件各自相对独立,综合性、系统性较差,导致学生学习各科知识后不能融会贯通,没有整机概念。然而技术的进步以及应用的需求迅速推动系统规模变得越来越大,功能实现也越来越复杂。传统的硬件教学和软件教学相分离的教学方法已经成为阻碍学生深入学习计算机的关键因素。打通计算机软硬件理论教学,设计计算机软硬件协同实验,培养学生知识的系统性和能力的综合性成为当务之急。

3.2 重视基础性

著名物理学家、诺贝尔奖获得者李政道先生曾经讲过“只有重视基础研究,才能保持创新能力”,计算机硬件课程中大部分是计算机专业基础课,因为计算机硬件支撑着计算机软件的发展,很难想象一个不懂硬件的人能开发出多么优秀的软件。因此学习硬件课程时尤其要掌握基本理论、基础知识和基本能力。

3.3 重视应用性

计算机硬件课程教学过程中,应结合目前计算机技术发展的新趋势,将课程内容与实际联系起来,使课程的应用性加强,增设应用型计算机硬件技术课程,如《嵌入式系统》、《单片机技术》、《微机控制技术》等。这些应用型课程不仅可以激发学生学习硬件课程的兴趣,而且有利于增强学生就业竞争力。

3.4 注意先进性

目前,32位机已经普遍应用于日常生活和生产活动,64位机也正得到应用和推广,但是很多地方院校计算机硬件类课程仍然以16位机作为其教学模型,32位机少有涉及。这使得教师的教学不能联系实际,学生的学习不能应用于实践。因此,在硬件技术飞速发展的背景下,硬件课程教学要注意课程内容的先进性,不能几年一成不变。

4 重构课程体系

计算机专业的硬件类课程体系涉及课程众多,而且各课程在教学中过分强调每门课程的完整性和独立性,忽视了课程之间内容的衔接和知识的整体优化,教学内容重复,教学效率不高[3]。比如中断系统、存储器系统,计算机组成原理、微机接口技术、汇编语言程序设计、计算机体系结构都有涉及但都不完整,学生在学习过程中既感觉重复,又似懂非懂。根据地方院校物质条件和师资力量,重新构建的硬件课程体系被划分为基础层、核心层和应用层三个层次,并在各个层次上将内容关联较为密切的课程进行有效的整合。

4.1 拓宽基础

计算机硬件课程的基础主要包含数学基础、物理基础和计算机基础。其中,物理基础主要包含《大学物理》、《电路分析》、《模拟电子技术》和《数字电子技术》等课程,这几门课可以以《数字电子技术》为核心进行有效整合;数学基础主要包含《高等数学》、《概率统计》、《离散数学》、《形式逻辑语言》等,其中《形式逻辑语言》可以合并至《离散数学》;计算机基础主要包括《计算机导论》、《C语言》、《操作系统》等。

4.2 确保核心

计算机硬件核心课程应该确立为《计算机组成原理》、《计算机系统结构》、《汇编语言》和《微机原理与接口技术》,由于这几门课程内容重叠较多,相互关联紧密,因此需要整合优化。其中前两门整合为《计算机组成与系统结构》,以计算机组成和系统结构的基本概念和原理为主要内容,重点介绍新型多核计算机系统的CPU、存储器、总线和I/O系统的硬件组成与工作原理,同时介绍并行计算机系统的发展趋势。后两门整合为《微机接口技术与汇编语言》,以Intel 80X86为背景机介绍汇编语言与接口技术的基础知识、原理和使用方法。

4.3 扩展应用

硬件类课程应用主要体现在嵌入式系统开发技术,主要包括单片机、ARM、DSP等技术。目前,嵌入式技术和嵌入式产品已经渗透到工业控制系统、信息家电、通信设备、仪器仪表、军事技术以及人们日常生活的各个领域。由于社会对掌握嵌入式技术人才的大量需求,使得嵌入式软硬件工程师成为最近以及未来几年内最为热门的职业之一。因此,作为地方新技术研究和探索最活跃的群体,地方高校应该接受嵌入式技术带来的挑战,尽快开设嵌入式系统的相关理论与实验课程,另外适当开设《Protel》、《AutoCAD》、《电子设计硬件描述语言》、《微机控制技术》、《Linux》等相关应用课程。

5 丰富教学手段

计算机硬件知识的特点是更新速度快、实践性较强,一些硬件课程不太适合以课堂教学为主的教学模式。改革计算机硬件课程教学方法和教学手段的基本原则应该是:知识的传授应当符合计算机硬件知识的特点,教学方法应当有利于培养学生的创新意识和创新能力。具体可以从以下几个方面进行改革尝试:

5.1 采用现代教育技术

由于硬件课程教学内容往往同时涉及时间和空间概念,具有较强的动态性和抽象性,难教难学。为此,需要充分运用现代多媒体教育技术,依靠教育信息资源和系统的教学方法,对硬件课程中的重点难点内容以多媒体形式进行教学设计,将静态图形变成动态图形,抽象内容变为可视内容,图文声并茂,从而起到良好的教学效果[4]。

5.2 建设硬件学科网站

学科网站的本质是一个基于网络资源的学科研究、协作式学习系统,它通过在网络学习环境中向学习者提供大量的学科学习资源和协作学习交流工具,让学习者自己收集、分析并选择信息资料,应用知识去解决实际问题。它强调通过学习者主体性的探索、研究、协作来求得问题解决,从而让学习者体验和了解科学探索过程,提高学习者获取信息、分析信息、加工信息的实践能力和培养良好的创新意识与信息素养。通过建设硬件学科网站,可以促进信息技术与硬件课程的整合,逐步实现教学内容的呈现方式、学生的学习方式、教师的教学方式和师生互动方式的变革,充分发挥信息技术的优势,为学生的学习和发展提供丰富多彩的教育环境和有力的学习工具。

5.3 问题启发式教学

在课堂教学中通过巧妙设置问题,让学生去查阅资料,自主学习,然后由教师总结并讲解,进行启发教学,可以收到良好的教学效果。例如,对于容易的内容可以设置问答题,布置给学生进行自学;对于重点内容可以设置论述题,布置给学生进行课堂讨论;对于难点内容可以设置针对性的练习题,布置给学生进行课后思考。这种基于问题的启发教学模式,使学习者在问题研讨的过程中增长了知识,提高了问题解决能力,培养了创新意识。

5.4 任务驱动式教学

任务驱动式教学将传授知识为主的传统教学,转变为以解决问题、完成任务为主的多维互动式的教学。在教学过程中,教师根据教学目标与教学内容,设计实践任务,提供设计案例和研究工具,指导学生完成实践任务,形成设计作品,实现边做边学的教学理念。任务驱动式教学方法符合人类认知规律,注重以学生为主体,在培养学生的专业能力的同时,也提高了学生的通用能力。

6 加强实践教学

计算机硬件教育的实践性非常强。多年来,虽然计算机硬件特别是CPU的发展速度从几年一代已经发展到几个月一代,但是由于实验条件的限制,计算机硬件的实验教学却远远落后于计算机技术的发展。目前计算机硬件教学中实践教学的时间过少,而且验证性实验占绝大多数,造成学生硬件动手能力普遍低下,其创造力无法得到训练[5]。其客观原因是缺乏足够的物质条件,尤其是许多地方院校硬件实验设施匮乏陈旧,甚至不能应付基本的验证实验,更谈不上开展综合性、设计性实验以及自主性创新实验;而其主观原因是实践能力在考试评价体系中所占比例过小,实验指导教师的工作积极性不高,指导能力也有限。因此,要加强计算机硬件实验教学,就必须在思想上重视,并从实验室建设、实验师资培养以及实践能力考核等方面采取有力措施予以保证。

7 结束语

本文针对地方院校的实际情况以及硬件课程教学中出现的典型问题,构建了分层次的硬件课程教学体系,并在各层次上整合优化了课程内容,通过丰富教学手段和加强实践教学等方面的有力措施,对地方院校计算机硬件类课程教学进行了改革与实践,取得了良好的效果。

参考文献:

[1] 教育部高等学校计算机科学与技术专业教学指导分委员会.中国计算机本科专业发展战略研究报告[J]. 中国大学教学, 2005, (5):7-10.

[2] 唐志敏. 龙芯1号通用CPU芯片的研制[J]. 中国科学院院刊, 2002,(6):437-439.

[3] 宋人杰,周欣欣,牛斗. 计算机专业硬件系列课程教学改革探讨[J]. 东北电力大学学报. 2007, 27(5): 30-33.

硬件设计论文第3篇

Abstract: Hardware experiment teaching plays an important role in the cultivation of talents in Colleges and universities. It emphasizes on cultivating students' practical ability and innovative ability, which is a necessary part of teaching. In view of the traditional hardware experiment teaching concepts, teaching system, experimental conditions, experimental teachers and evaluation etc., combined with their years of computer hardware experimental teaching experience, this paper puts forward measures hoping to improve experimental teaching and enhance the quality of teaching.

Key words: computer hardware; experimental teaching; teaching system; laboratory construction; teaching staff

1 概述

硬件实验教学是计算机实验教学的重要组成部分,是计算机专业培养学生动手能力、实践与创新能力的必需环节。不断改进计算机硬件实验教学体系、更新实验教学内容、改革实验教学方法,以适应计算机硬件技术的不断发展[1]。以下结合自身多年来的计算机硬件实验教学经验,谈谈自己的看法。

2 硬件实验教学方式与特点

硬件实验教学具有理论性强、难度大、软硬件结合紧密等特点。与理论教学一样,具有一套完整的科学教学体系,同时又有区别于理论教学的一些特点[2]。计算机硬件实验一般需要用到的软硬件有微机、配套软件、实验设备、测量仪器仪表及各种线缆等,使用设备多、综合性强、复杂度高。实验成功与否涉及因素多,操作方式、软硬件结合等方面都会影响实验结果,实验时需要综合考虑。

实验课前,教师会要求学生进行实验预习。实验时,教师讲解实验目的、原理和电路,布置内容与要求。学生根据实验内容,结合硬件实验箱,进行电路连接、编写程序、运行并观看结果。若结果有出入或者错误,则需要进行排查,直到实验结束。实验完成后,记录数据,进行分析判断并填写实验报告。以单片机AD转换实验为例,讲授理论知识后布置实验预习;实验前教师讲解AD转换工作原理、电路并布置实验内容;实验时,学生按照要求将单片机硬件实验箱相关电路模块用导线连接,在上位机端使用KEIL软件进行编程,完成后进行调试验证。使用数字万用表观察模拟电压量以及实验箱上八段数码管显示的数字量,对比模拟量与数字量的对应关系,若模拟量与数字量都能正常同步增加与减小,实验基本成功;若不能,则需要检查硬件电路连接是否正确、软件编写是否到位;实验完成后,需要记录数据完成实验报告并分析结果。

3 存在的问题

3.1 观念滞后

国内的教育思想中存有“重理论,轻实践”的传统观念,实验教学仍处于理论教学的从属地位,被视为是单纯理论教学的验证和延伸[1]。及时转变观念,认识实验教学的重要性,就显得尤为重要。一般高校只重视学生的软件教学,轻视了硬件教学,存在“重软轻硬”现象。由于硬件实验的特殊性,学生也只对软件感兴趣,害怕硬件实验与操作。比如有的专业,学过单片机技术课程,却只懂得一点单片机理论知识,做起实验来,芯片控制与编程、电路连接,无从下手,更别说学以致用。同时,系部与教师对硬件实验也不够重视,这样对高校人才培养是不利的 。

3.2 实验教学体系缺乏系统性和科学性

计算机体系结构有很强的系统性。但硬件课程之间没有形成一个系统整体,缺乏系统性和完整性的实验教学体系,基本以演示性、验证性的实验为主,缺少综合性、设计性实验。大多高校一般都开设有数字逻辑电路、计算机组成原理、微机原理与接口、单片机技术、嵌入式系统等硬件课程,各门课各自按课程要求安排实验,实验内容之间缺乏相互联系。另外,课程开设有先后顺序关系,可能存在如“微型计算机原理与接口”与“单片机技术”同一学期进行教学的情况。同时,存在硬件实验在学时学分上的设置不合理、学时偏少、实验课程无学分、课程结束后无课程设计环节等情况。

3.3 实验条件不完善

近年来, 高校的软硬件设施建设有了很大提高,积极更新实验室设备、建设虚拟仿真实验室等。但是,一般高校在实验室建设更新上更侧重于软件类实验室的建设更新,比如计算机机房。造成了硬件实验条件的不足、设备老旧、更新不及时等问题。还存在实验场所不足,硬件实验室设置不全,相关课程只上理论、没有硬件实验的情况;有的实验室存放多套实验设备,实验室利用率高,却出现单套设备使用率较低的情况,这样给实验室增加使用学时、实验室开放、开设课程设计等方面增加了困难。

3.4 实验教师队伍相对薄弱

稳定的教师队伍,对高校的发展与人才培养至关重要。实验教师作为实验教学的设计者和执行者,对实验教学起到了关键的作用,其能力和素质的高低直接影响了学生学习的积极性和学习效果[3]。相对于公办高校,独立学院存在师资队伍不稳定、人员流动率高等问题。造成许多硬件课程是新老师任教、非专业教师上专业课程,以及一位教师任教多门专业课程等情况,这样不管是理论还是实验教学,都是不利的。另外,还缺乏专业的实验员,而硬件实验一般是由教师和实验员一块配合进行的。由于独立学院的特殊性,一位实验员需负责管理多间实验室,既要管理机房又要负责硬件实验室,还管理着网络实验室。而且硬件实验设备维护难度大,对专业技术要求高,实验室管理往往会套用计算机机房的管理方式,容易造成管理不足或“虚位”管理。

3.5 实验内容与考核方式需要改进

受旧的教学模式影响,以教师为中心,学生按照老师要求和步骤进行实验,缺乏主动性,这种模式影响学生创新精神和创造力的发挥。硬件理论教材陈旧,实验教材单调,或没有实验教材,多年使用同一本教材,不能与时俱进。一般来说,实验教材是各高校自行编写,实验电路、操作步骤、表格等都已经准备好,只需按照教材进行实验与验证、数据填写、完成报告后就算完成实验。这束缚了学生的思维,影响了创新能力的培养。有的设备配套实验教材,使用方便,但存在教材简单、错误多,不能完全满足实验要求。而且,实验教材上基本只有演示性和验证性实验,缺少设计性、综合性的实验内容。另外,在实验考核方法上,也有不足。一般硬件实验是依附于理论教学的,没有独立设课,学生对实验重视度不够,只注重于期末的考试,实验过程、数据记录和报告应付性完成,影响了教师对学生的量化考核,也影响学生学习的积极性。

4 改进措施

4.1 建立和改进硬件教学体系

培养学生创新能力和综合素质为出发点,以调动学生学习的主动性和创造性为目标,提高学生综合实践能力和应用能力为结果,做到实验教学融会贯通的模块化、实验教学体系的多层次、实验教学类型的多样化、实验教学内容的系统化[4]。根据计算机硬件知识结构,将硬件实验教学体系分为四层:入门层、基础层、拓展应用层和提高层,如图1所示。

入门层实验让学生熟悉常见的模拟电路、数字逻辑电路原理,具有设计一定功能电路的实践能力;基础层的“计算机组成原理”主要完成运算控制器、存储器、CPU等器件的原理与控制实验,熟悉简单的计算机原型组成与原理;微机原理接口培养使用与硬件紧密结合的汇编语言编程、CPU与部件的接口设计等,使学生对计算机软硬件系统有更进一步理解;拓展应用层实主要完成单片机、嵌入式系统的软硬件设计,使学生能熟悉应用系统的软硬件开发,提高实际应用能力;提高层的综合设计与应用创新,要求学生将所学专业知识进行综合运用,进行应用系统开发和新技术的研究应用,提升学生科研和开发能力。比如参与教师课研、毕业设计,参加各种电子设计竞赛等活动。

在实验教学内容层次上,可以将部分计算机硬件课程的实验内容分为4类,即验证型、设计型、综合型、探索型,实验内容由浅入深,循序渐进[5]。验证型实验强化理论知识的理解;设计型实验培养电路设计和调试能力;综合型实验使学生掌握综合应用软硬件的技能;探索性实验培养学生分析、判断和解决实际问题方法和能力。在改进实验教学体系和教学内容层次上,还需要根据硬件实验课程情况,在实验学时、课程设计和实验课程学分等方面做出改进,以加强学生从基础到应用、从探索实践到创新能力的层次化培养全过程。

4.2 加强建设,改善实验室环境

改善实验环境,从硬件和软件建设两方面入手。

1)硬件设备是保障实验正常开展的前提条件。微机与硬件实验箱使用3~5年就会出现设备老化、运行速度和设备可靠性下降等情况,一些常用仪器仪表,比如万用表、示波器之类的仪器,也需要及时更新换代,否则无法满足实验教学需求。因此,在硬件实验室建设上,根据教学内容的需要及新技术的发展来定期制定设备购置计划,及时让学生用上最先进的产品来适应社会的发展[6]。另外,尽量避免出现过多套数的硬件实验设备共用一间实验室情况,预留足够的空间和时间来进行实验室的开放。

2)在加强硬件建设基础上,也需加强软件方面建设。第一,及时安装更新当前主流系统软件和应用软件,使学生能够熟悉使用比较当前主流的应用软件,做到与时俱进。由于硬件实验箱存在硬件电路或芯片的不足,安装虚拟仿真软件进行实验,如数字逻辑电路、单片机技术实验课程使用PROTUES仿真软件,弥补硬件实验箱的短板,做到能实不虚、虚实结合的实验环境。第二,要加强实验室管理与维护,形成良好的实验环境,完善规章制度,保障实验室正常高效使用。第三,相对于理论授课,硬件实验在学时上明显偏少,导致学生动手能力不足。一种途径是增加实验学时数,也可以在课余时间进行硬件实验室的开放,开展有偿使用实验室服务工作,满足学生在课余时间使用设备做实验的要求。

4.3 加强师资队伍,提升水平

加强师资队伍建设,是培养高质量学生的前提条件。如何培养出一批既要有知识,又要有能力,更要具有使知识和能力得到充分发挥的高素质人才,对教育工作者而言是一大挑战[7]。硬件师资队伍建设,需要将理论教师与实验员队伍建设一起抓,两者不可或缺。除了留住在职教师之外,招聘有丰富经验的专业教师加入计算机硬件教学队伍,提高专业水平。同时,要加强对教师和实验员专业素质的培养,组织参与校内外的教学研讨交流,参加计算机硬件有关的学术会议、厂家举办的各种软硬件培训、与企业开展横行课题合作及带领学生参加各种计算机硬件类的竞赛等活动,以提升专业水平。

4.4 改进实验考核机制

硬件实验在增加实验学时、课程设计环节等内容之外,还需要改进实验考核机制,引起学生对硬件实验的重视,提高学习积极性。适当增加学时,让学生在学习理论知识后,有时间在硬件实验室完成实验,也可以让教师更好的进行实验成绩综合评定。增加课程设计、硬件实验课程设置学分,让学生提高动手能力之外,也可以提高学生对实验的重视程度。同时,为了实验成绩评定的公平性,实验时要求每位学生独立操作和完成实验报告。实验课程单独设置学分,意味着理论与实验的考核分开,让学生在学到相关理论知识外,能够独立完成实验,提高动手能力。

硬件设计论文第4篇

关键词:计算机;硬件教学

现阶段我国各级院校在计算机硬件教学方面都存在着比较多的问题,从教师的角度来说,过度的强调理论,而忽视了实践,这对计算机专业教学而言,是一种本末倒置的行为,而从学校的角度来说,并没有计算机硬件这一学科,因此安排的课时比较少,聘请的相关教师也不够专业,而从学生的角度来说,并不喜欢这一学科,因此其学习热情并不高,综上原因导致了计算机硬件教学的如今的现状。

1 计算机硬件教学现状

计算机硬件教学是计算机课程中作为重要的教学内容,但是也是教师最容易忽略的教学内容,因此我国的计算机硬件教学现状问题突出,其中体现在以下几点:

1.1 过度强度理论知识

因为计算机硬件主要讲授的是计算机的各个硬件,因此需要学生首先要认识这些各个硬件,之后才能依据其性能特点来学习其与之相关的理论知识,这样能够达到良好的教学效果。但是大部分计算机硬件教师往往都首先进行理论知识的讲解,将大部分时间都分配给理论知识,要求学生死记硬背下相关的硬件理论,这使得学生厌烦心理也越来越强烈,不愿意上这门课。但是实际上,计算机硬件教学应该更多的偏向操作实践,计算机专业的学生的就业能力也主要体现在实践能力方面,因为教师没有注意到这一点,因此很多学生并不懂得基本的的操作,甚至学习的相关理论与计算机硬件无法对应上,这严重影响了学生们的就业前景。

1.2 教学内容没有得到及时的更新

信息化时代,计算机的有关技术更新换代非常快,而计算机硬件教学内容还停留在最初的阶段,或者其更新的速度远远低于技术更新的速度,这为提高学生的能力非常不利。也正是因为如此,计算机硬件教学与现实企业需求才出现了严重的脱节现象,学生毕业之后,进入企业往往需要重新学习,重新培养,这是社会资源的一种严重浪费。同时对于刚刚入职的学生来说,也会对其自信心造成很大影响。除此之外,教学设备也十分落后,难以满足现实的要求。

1.3 课程体系不健全,教学缺乏系统性

计算机技术的系统性较强,是由硬件技术和软件技术构成的庞大系统。在当前的教学中整体缺乏系统性,忽视教学内容和知识之间的有效衔接。一个问题是课程体系不健全,由于师资力量的不足和教学资源不足等特点,存在自身课程体系缺乏特色和忽视学生学习能力和学习特点等问题,存在课程名称种类繁多,但是变动性大,稳定性不强等诸多问题,另一个问题是教学缺乏系统性,计算机硬件技术和软件技术本应是一个完整的系统,知识内容是相互交叉和互补的,但是由于课程体系缺乏系统性,导致这些知识内容缺乏有效衔接,学生无法建立完整的知识体系。在教学过程中由于教学衔接不够,知识点重,缺失现象严重,这些导致了学生对于计算机硬件的结构缺乏完整认识,学生缺乏持续学习的耐性、也缺乏学习的兴趣和积极性。

2 计算机硬件教学水平提高的对策

正是由于计算机硬件教学还存在着比较多的问题,因此教师、学校以及相关部门都有责任采取措施,提高计算机硬件教学水平,以此增加其课堂教学的有效性。针对上述问题,其采取的措施如下:

2.1 注重实践教学

计算机硬件教学的最终目标是通过教学能够提高学生的实践操作能力,对计算机硬件能有一个整体的把握,与此同时,培养学生分析以及解决问题的能力。但是因为现阶段计算机硬件教师并没有将重点放在实践中,因此上述目标并没有完全的实现,为此,教师应该注重实践教学,教师布置作业时,要求学生以实践的方式完成,在学生作任务时,教师可以从旁协助,在适当的时机进行适当的指导,如果学校有条件,教师可以带领学生进行社会实践,进入到企业或者公司中参与实践,这样学生对计算机硬件会有更深入的了解,同时教师也可以根据企业或者公司所需,适当的调整教学内容,以此确保教学与社会需求接轨,这为学生更好的就业提供帮助。

2.2 加强课程体系的建设

积极建设计算机硬件教学的课程体系,能够有效实现教育教学的实用性和创新性。加强课程体系的建设,可以从以下几方面入手:一是选择合适教材。二是加强实践课程的教学。在教学过程中,要将基础知识学习和实践课程学习结合起来,实践教学的内容可分为验证性实践、设计性实践、综合性实践三个方面,验证性实践是根据实验要求和实验步骤开始试验,测试所需数据,并验证数据的合理性和正确性,这是在学习基础知识之后走向实践的第一步,这是学生学习的基础;二是设计性实践,是通过学生通过将所学的基础知识运用到实践过程中,学生自行设计试验方面,形成初步的分析问题和解决问题的能力;三是综合性实践,即学生在炎症性实践、设计性实践的基础上,灵活的运用所学计算机技术创新性的进行学习的过程。

2.3 灵活运用多种教学方法

灵活多样的教学方法能够充分发挥学生的主体作用,有效提升教学质量,因此,在实际的教学过程中要注重运用多种教学方法,使学生较好掌握计算机硬件的知识和技能。一是运用计算机辅助教学。通过运用软件的建模能力,对比真实实物建模建立计算机中主板、硬盘等核心硬件,同时完成内部构造,这样能够方便教师授课,同时方便学生使用,使其真正的服务于计算机教学。二是建立虚拟化计算机硬件课程,教师可以根据学生的能力和水平,设计具有不同层次,不同难度的教学实验,以及综合课程设计,为老师和学生提供一个跨越空间和时间的实验平台,即在基于构件化的虚拟实验室系统中,学生只需实现核心算法的构件即可。

结束语

综上所述,可知信息时代的大背景下,做好计算机硬件理论十分重要,为了达到良好的学习效果,设置该课程的院校,应该构建出一个优良的课程体系,教师应该端正自身的教学态度,为学生做一个好榜样,教师只有认真的教学,学生才能认真学习的可能,虽然我国在计算机硬件教学方面存在一些的问题,有些问题甚至比较严峻,相关院校以及教师应该正视这些问题,采取必要的手段,争取在一段时间内,获得良好的效果。

参考文献

[1]李继灿,郭麦成,沈疆海,张红民.“计算机硬件”教学与教材同步改革的思考[J].高等工程教育研究,2003(3).

[2]钟乐海,王朝斌,唐新国.高等师范院校计算机科学与技术专业计算机硬件教学改革[J].四川师范学院学报(自然科学版),2003(1).

硬件设计论文第5篇

关键词:VHDL,电路系统,数据选择器

 

1 引言

VHDL (Very HighSpeed Integrated Circuit Hardware Description Language)是美国国防部在20世纪80年代中期开始推出的一种通用的硬件描述语言。作为IEEE的工业标准硬件描述语言,又得到众多EDA公司的支持,VHDL语言在电子工程领域已成为事实上的通用硬件描述语言。VHDL为设计者提供了一种全新的数字系统的设计途径。使用VHDL语言不只是意味着代码的编写,更是为了便于建立层次结构和元件结构的设计,利用VHDL编写的电路模块可被重复利用。故可以简化设计者的设计工作,大大缩短设计时间,减少硬件设计成本,提高工作效率。

2 VHDL的优点

VHDL主要用于描述数字系统的结构、行为、功能和接口。应用VHDL进行工程设计的优点是多方面的:

(1)具有更强的行为描述能力,是系统设计领域最佳的硬件描述语言。

(2)具有丰富的仿真语句和库函数,使得在任何大系统的设计早期就能查验设计系统的功能可行性,随时可对设计进行仿真模拟。

(3)VHDL语句的行为描述能力和程序结构决定了它具有支持大规模设计的分解和已有设计的再利用功能。该功能能满足市场大规模系统高效、高速的需要,可替代多人甚至多个组共同工作。

VHDL的许多优点给硬件设计者带来了极大的方便, 自然被广大用户接受, 得到众多厂商的大力支持。使用VHDL设计数字系统已成为当今电子设计技术的必然趋势[4 ] 。

3 “自顶向下”( Top-Down) 的设计方法

随着数字系统设计规模的急剧加大,“自顶向下”的设计方法成为现代EDA设计的趋势。论文参考。传统的系统硬件设计方法是采用自下而上的设计方法。即系统硬件的设计是从选择具体元器件开始的,并用这些元器件进行逻辑电路设计,完成系统各独立功能模块设计,然后再将各功能模块连接起来,完成整个系统的硬件设计。而在VHDL的设计中,采用“自顶向下”( Top-Down) 的设计方法,设计常用流程图如图1所示,系统被分解为各个模块的集合后,可以对设计的每个独立模块指派不同的工作小组,这些小组可以工作在不同地点,甚至可以分属不同的单位,最后将不同的模块集成为最终的系统模型,并对其进行综合测试和评价。论文参考。“自顶向下”设计的基本步骤为:

(1) 分析系统的内部结构并进行系统划分,确定各个模块的功能和接口;

(2) 编写程序,输入VHDL代码,并将其编译成标准的VHDL文件;

(3) VHDL 源代码进行综合优化处理;

(4) 配置,即加载设计规定的编程数据到一个或多个LCA器件中的运行过程,以定义器件内的逻辑功能块和其互连的功能。

(5) 下载验证,通过编程器或下载电缆载入将步骤(4) 得到的器件编程文件下载到目标芯片中,以验证设计的正确性。

图1 VHDL工程设计流程图

Fig.1 The design flow based on VHDL

4 VHDL的设计举例

下面以4选1数据选择器为例说明使用VHDL的设计过程。4选1数据选择器框图如图2所示。论文参考。

该数据选择器的VHDL描述如下:

entity sel is

port(a,b,c,d,sel_1:IN bit;

out_1:OUT bit);

end sel;

architectureexample of sel is

begin图2 4选1数据选择器

process((a,b,c,d, sel_0, sel_1) Fig.2 The one-in-four selector

begin

if sel_0=‘0’andsel_1=‘0’then

out_1<=a;

elsef sel_0=‘0’andsel_1=‘1’then

out_1<=b;

elsef sel_0=‘1’andsel_1=‘0’then

out_1<=c;

else

out_1<=d;

end if;

end process;

end example;

利用VHDL强大的仿真功能,经过编译后运行仿真,之后可以产生信号波形,用以分析仿真结果。本例中产生波形如图3所示。仿真结果符合设计功能的要求。

图3 仿真结果

Fig.3The waveform of simulation

5 结束语

本文以4选1数据选择器设计为例,说明利用VHDL设计电路系统的基本方法和过程。用VHDL语言实现电路的设计过程,是一个以软件设计为主,器件配置相结合的过程。这种软件设计与硬件设计的结合,以一片器件代替由多片小规模集成数字电路组成的电路,其优势已经越来越明显。在进行系统设计时,如果系统比较复杂,所需器件数目多,并要求体积小、速度快、功耗低时,首先应该考虑使用VHDL进行芯片设计,然后再进行整体设计。

参考文献

[1] Stafan Sjoholm,Lennart Lindh. 边计年,薛宏熙译. 用VHDL设计电子线路[M]. 北京:清华大学出版社,1999.

[2] 潘松,黄继业. EDA技术实用教程[M]. 科学出版社,2002.

[3] 侯伯亨,顾新. VHDL硬件描述语言与数字逻辑电路设计[M].西安: 西安电子科技大学出版社, 2004.

[4] 赵晨光等. VHDL语言在电子设计实践中的应用. 沈阳航空工业学院学报[J]. 2004,21(1):57-59.

[5] 张利萍, 胡玉兰. 硬件描述语言VHDL应用设计及实例[J]. 沈阳工业学院学报,2002,21(2):70-73.

硬件设计论文第6篇

摘要:本文介绍了我校对计算机硬件实验课程体系及实践教学环节进行的改革,建立了“基础层-应用层-提高层”三层体系结构的硬件课程群实验体系,并对多层次、系列化的硬件实践教学模式及训练模式进行了探讨。

关键词:硬件课程群;实验体系;实验内容;实践能力

中图分类号:G642

文献标识码:B

我校计算机专业自99级开始进行了较大规模的扩招,但由于师资力量跟不上、实验条件和实验内容相对落后等原因,造成计算机硬件教育存在层次单一、教学内容滞后、理论与实践脱节等问题,学生普遍存在着“重软怕硬”的现象,毕业后硬件设计能力差,软件开发缺少后劲。为提高学生的硬件动手能力,增强毕业生的社会适应性,学院自2002年开始进行计算机硬件课程群建设及相应的硬件课程群实验体系建设,包括“计算机组成原理”等九门硬件课程及5门相关的实践课程。本文对我院计算机硬件课程群实验体系建设及硬件实践教学环节的改革进行了探讨与总结。

1构建科学完整的硬件课程群实验体系

在原有的课程体系下,我院为本科生开设的硬件实验教学课程有“数字逻辑实验”、“计算机组成实验”、“微机接口实验”、“单片机实验”。由于实验条件的限制,各课程实验内容相对独立,综合性、系统性较差;尚有部分硬件主干课程没有对应的实验课程,如系统结构。实验课程体系存在诸多问题。

(1) 缺乏对学生系统设计能力的培养。传统的硬件设计和软件设计相分离的设计方法成为阻碍设计和实现复杂、大规模系统的关键因素。系统平台的搭建、软硬件的协同设计验证和软硬件功能模块的可重用性已成为现阶段设计方法的热点。培养学生具有系统设计的思想成为当务之急。

(2) 缺乏对学生可编程芯片设计能力及EDA技术的培养。可编程芯片与EDA技术是现代电子设计的发展趋势,将可编程芯片设计及EDA技术引入实验教学中是时展的需要。

(3) 缺乏综合性的实践课程,学生的创新能力发挥受限。由于实验条件限制,原有的多数实验是基于纯硬件逻辑设计的,只是在面包板上用器件构建小系统,功能扩展性差;并且只能开设数量有限、技术含量较低的实验,学生无法开展自主的综合性设计,无法进行创新能力的培养。

为此,经过充分调研和论证,我院首先从修改03级教学计划入手,对课程体系中的多门课程进行了调整,同时理顺各门课程间的关系,构建起了新的硬件课程体系。该课程体系由必修课程、选修课程及配套实践三部分组成。必修课包括“组成原理”、“接口技术”、“系统结构”等基础课程。为适应社会需求,在选修课中删去原有的“诊断与容错”等一些过时的课程,增加“数据采集”、“计算机控制技术”、“嵌入式系统”等社会需求较强、实用价值高的应用性课程,同时新开了“模型机设计与组装”、“硬件综合实践”等实践课程。在07版教学计划中,又新增了“DSP原理与应用”、“嵌入式系统实践”等新课程,保证课程体系的实用性与先进性。

硬件系列课程从体系结构上划分为三个层次:基础层、应用层和提高层,其课程间的关系如图1所示。基础层为“数字电路”与“组成原理”。“数字电路”课程虽然在教学体系上不属于计算机硬件系列课程,但它是计算机硬件系统的技术基础,是必修的前续课;“组成原理”介绍计算机的基本组成和工作原理,解决整机概念;通过“电工电子实习”与“模型机设计与组装”两门实践课程,强化学生的硬件动手能力。在应用层中,通过“接口技术”介绍应用层的接口和相关外设,以“嵌入式系统”等四门实用性强的课程作为选修课,每门课程都配有相应的实验环节,并通过“硬件综合实践”、“嵌入式系统实践”强化学生对基础知识的掌握和综合应用。提高层为“系统结构”及“性能测试与分析”实践课程,通过学习和实践,能够使学生比较全面地掌握计算机系统的基本概念、基本原理、基本结构、基本分析方法、基本设计方法和性能评价方法,并建立起计算机系统的完整概念。

在硬件课程群实验体系建设过程中,突出强调课程体系的系统性和完备性。从第1学期到第7学期硬件实验不断线,层次逐步提高,实验内容衔接连贯。注意各硬件实践的相互次序和互补,使硬件实践训练层次化、系列化,以此来系统强化学生的硬件动手能力。同时调整各课程的开设顺序,理顺每门课与前导课和后续课之间的关系,从而保证硬件课程体系的系统性和完备性。

注:所有必修课程与选修课程均开设课内实验,包括验证实验(20%)、设计实验(80%);实践课程单独开设,包括综合实验(80%)、探索实验(20%)。

2改革实验教学内容与模式

计算机硬件系列课程的重要特点之一是工程性、实践性强。为了使学生在学过该系列课程后具备较强的实际动手能力和计算机应用系统的开发能力,应在实验教学内容的设置上体现出基础性、系统性、实用性和先进性,既要重视计算机硬件的基础内容,又要结合当今电子与计算机的最新发展。为此,我们对该硬件系列课程的实验教学内容和教学模式进行了改革创新。

2.1优化实验内容,引进实验新技术,提高硬件设计的效率和兴趣

随着计算机硬件技术的日益发展,各种各样的微处理器不断更新,功能不断增强,以FPGA为代表的数字系统现场集成技术取得了惊人的发展,嵌入式系统设计也逐步成为主流。为了使学生跟上时代潮流,了解最新技术,需要不断引入新设备、新技术,提高硬件设计的效率和兴趣。如更新的“组成原理”和“系统结构”实验台,通过RS232串口与PC机相连,可在PC机上编程并向系统装载实验程序,还可在PC机的图形界面下进行动态调试并观察实验的运行,使学生像设计软件一样来设计硬件,做到了硬件设计软件化,大大提高了硬件设计的效率和兴趣。“模型机设计与组装”,将CPLD和FPGA等技术引入,用CPLD来设计复杂模型机。“汇编语言”和“接口技术”补充Windows下设备驱动程序的设计与实现,增加PCI、USB的应用等内容。“系统结构”通过局域网组建小型的微机机群,研究探索多处理机操作系统,试验并行程序的运行与任务分配调控等功能。为适应当前嵌入式芯片的迅速普及应用,新开设了“嵌入式系统设计”课程设计。针对学生已学过多门硬件课程,但仍不能完成一个完整的、可独立工作的计算机系统设计问题,新开设了“硬件综合实践”,使同学亲自体会设计一台微型计算机系统的全过程。

2.2建立“验证型-设计型-综合型-探索型”的多层次实践教学模式

在实验教学内容的改革上,本着“加强基础、拓宽专业、注重实践、提高素质”的方针,将实验项目分为4类,即验证型、设计型、综合型、探索型,实验项目由浅入深,循序渐进。在所有硬件必修和选修课程中,全部开设课内实验。课内实验由验证实验(20%)、设计实验(80%)组成。所有实践课程都单独开设实验,包括综合实验(80%)、探索实验(20%)。这样,课内课程中开设“验证型”和“设计型”的实验,在后续课程设计中,开设“综合型”和“探索型”的实验,形成“验证型-设计型-综合型-探索型”的多层次实践教学模式,系统强化学生的综合设计和硬件动手能力。

在验证型实验中,注重使学生巩固基本理论,进一步掌握基本概念和基本技能。在设计型的实验中,注重培养学生的创新意识、设计能力和动手实践能力。在这一类实验中,以学生动手为主,教师辅导为辅,只给定实验的课题及达到的目的,中间过程需学生自己去查阅资料和设计方案,直至最后调试完成。在综合型实验中,注重培养学生综合运用所学知识的能力,使学生受到更为实际、更加全面的科学研究的训练。综合实验的特点是没有现成的模式可循,学生需要独立完成硬、软件设计和调试。在调试过程中,学生自己动手分析解决实验中出现的问题,虽然有一定的难度和深度,但对学生很有吸引力,能使学生从应付实验变为主动实验,不仅提高了基本操作技能,也发挥了学生的主观能动性和创造性。课程设计的部分内容属于探索型实验,学生可以自主选择感兴趣的课题及相关开发工具,写出设计书,交给指导教师审核后实施。在这一过程中,学生需要查阅大量的资料,培养了学生的自学能力、研究设计能力、独立分析问题及解决问题的能力和创新能力。

2.3确立“系列化硬件实践训练”方案

硬件实践训练由“课程实验-课程设计-综合训练-毕业设计”四个系列组成。课程实验――所有硬件课程都开设。课程设计――在“嵌入式系统”、“组成原理”等重点课程中开设,在这些课程的课内实验中进行部件或模块实验,在课程设计中进行综合性、创新性设计。综合训练――通过“硬件综合实践”展开。该课程安排在大四开设,是一门综合性设计实践课程,也是对前面所学课程的一个全面应用和总结,在硬件课程群建设中起着“总练兵”的作用。通过让学生亲自设计一台小型计算机控制系统,包括计算机的各个部件和功能,“麻雀虽小,五脏俱全”,旨在让学生真真切切感受到如何设计一个可独立工作的计算机系统,强化和提高学生的综合实践能力,培养学生的创新思维和创造能力。毕业设计――每年精选一定数量的硬件毕业设计题目,提供实验场所、设备及材料,让对硬件感兴趣的同学去实现自己的设计,放飞自己的理想。学生以接近于实际应用环境,完成高质量综合设计为训练手段,以掌握计算机硬件结构与应用系统设计作为主要训练目的,使学生对计算机的整个硬件系统有较全面、较系统的掌握。要求学生能够根据需要设计出一定规模的计算机硬件应用系统实例,从模板设计、制作、总线的走向、计算机部件选取、工作原理的分析、部件在模板上的部局、部件的焊接、运算能力的调试、结果正误的判断分析等流程的设计到具体的制作,直至最后写出毕业论文,使学生建立系统的概念与工程的概念。

3结束语

上述改革取得了令人满意的效果。大学生对计算机硬件实验课程学习的兴趣增强了,实验室开放期间,有更多的学生走进了硬件实验室。在毕业设计时,有更多的学生选择了与计算机硬件系统设计和开发相关的课题。学生做完硬件综合实习和硬件毕业设计课题后,普遍充满自豪感和成就感,感到硬件设计及底层软件开发不再可怕。通过这样的训练,提高了其综合设计能力和创新能力,同时也锻炼了他们的团队合作精神,步入单位就能直接胜任计算机应用系统设计、开发的工作,实现高校、学生、用人单位等各方面的多赢。同时我们也应该看到,随着新技术的不断发展,计算机硬件系列课程及其实验体系的建设和实验内容的改革是一项长期不懈的工作,需要不断完善。

参考文献

[1] 罗家奇,李云,葛桂萍等. 计算机硬件系统实验教学改革的研究[J]. 实验室研究与探索,2007,26(8):98-99.

[2] 武俊鹏,孟昭林. 计算机硬件实验课程体系的改革探索[J]. 实验技术与管理,2005,22,(10):107-109.

硬件设计论文第7篇

【关键词】嵌入式系统;教学;协同设计

嵌入式计算机技术是21世纪计算机技术重要发展方向之一,应用领域十分广泛且增长迅速。随着嵌入式系统的技术发展,嵌入式系统的设计方法也在不断变化和进步。传统的嵌入式系统设计方法在对目标嵌入式系统提出系统定义方案后,要对系统实现进行可行性分析和需求分析。在经过严格分析论证后,进入到系统总体设计方案阶段,该阶段除提出系统总体框架以外,还需进行软硬件划分、处理器选型、操作系统选择、开发环境选择等诸多工作。这种方法经过多年测试验证,在市场中具有成熟可靠、简单实用的特点,但是该方法的设计过程明显表现出软件和硬件开发相对独立割裂,而且软件开发工作往往需要等到硬件平成后才能开展,显然这不利于系统的最终成品推出时间控制,而且调试、测试的过程也需要反复迭代和修改设计,这样就导致硬件方案的变动在所难免。由于软硬件分离独立设计,这又反过来影响软件系统的开发,从而导致系统设计成本的提高,开发效率的降低。

同时传统嵌入式系统设计方法对开发者的设计经验如软硬件的划分、系统集成调试等提出了较高的要求。图1嵌入式系统的“协同设计”方法相对于传统的嵌入式系统设计方法,引入了软硬件“协同设计”概念的嵌入式系统设计方法能较好的弥补传统嵌入式系统设计方法的不足。所谓软硬件“协同设计”是在满足系统设计要求的前提下,以达到系统能够工作在最佳状态为设计目标,通过统一协同分析系统软硬件模块资源的方法,综合设计系统的软硬件体系结构。这种方法与传统设计方法相比主要的特点在于系统总体设计方案中采用了系统级的仿真建模处理,对系统所涉及的硬件和软件针对设计要求统一建模,根据建模结果选择最优化软硬件划分等设计方案,并对软硬件协同仿真和验证。如图1所示为一种典型的嵌入式系统协同设计方法。从图中可以看到,嵌入式系统的“协同设计”方法与传统的嵌入式系统的设计方法相比较而言,更重视总体设计下的系统级别的仿真建模和软件、硬件综合设计方法。系统级别的仿真建模通常采用独立的功能性规格方法对系统整体进行定义和说明,根据建模结果对软硬件模块进行划分,并且对该划分方案进行性能评估甚至指令级别的参数评价。通过反复迭代得到最优化方案和结果为止。在完成了软硬件综合后记性具体软硬件协同仿真和验证,获得满意结果后进行系统集成和测试。值得注意的是,在“协同设计”过程中,应充分考虑软硬件的关系并在设计的每个层次上给予测试验证,以便于尽早发现问题解决问题,以免崩溃性错误发生。软硬件协同设计有如下一些基本要求:统一的软硬件描述方法。交互式软硬件划分技术。

这要求允许采用不同的软硬件划分设计方法进行系统仿真和比较,并需要辅助最优化决策及应用实施。完整的软硬件模型基础。这要求设计过程的每个阶段都必须支持评价,并支持阶梯式的开发方法与软硬件整合。正确的验证方法。软硬件协同设计的一些理论和方法是嵌入式研究领域的一个热点。目前一些厂商已提供了协同设计的集成化平台或者模型,比如ARMESL平台和RTSM模型等。ARMESL虚拟平台是采用了嵌入式系统的协同设计方法的典型平台代表。由此可见,这种采用“协同设计”概念的嵌入式系统设计方法是在充分利用先进模拟/仿真平台的基础上,合理考虑了软硬件的划分,并对软硬件子系统进行了可靠有效的仿真及测试,避免了致命性错误的产生,提高了系统开发效率,缩短了TTM。但是从另一个方面来看,传统的嵌入式系统设计方法从系统设计经验,开发平台的使用到相关配套资料等方面来看都是十分成熟的方法,对于一些特定嵌入式系统或者开发者极其熟悉的设计领域(特别是MCU领域),传统嵌入式系统设计方法仍具有非常好的应用前景。

作者:王剑 单位:长江大学计算机科学学院

【参考文献】

[1]王硕旺,洪成文.美国麻省理工学院工程教育的经典模式———基于对CDIO课程大纲的解读[J].理工高教研究,2009,28(4):116-119.

[2]陈春林,朱张青.基于CDIO教育理念的工程学科教育改革与实践[J].教育与现代化,2010,94(1):30-33.

硬件设计论文第8篇

关键词:电磁场;实验改革;仿真教学;开放实验室

中图分类号:G642 文献标识码:A 文章编号:1007-0079(2014)36-0182-02

“电磁场与微波实验”课程是本科通信专业学生重要的基础实验课程之一,电磁场理论数学公式繁多,概念抽象,电磁波看不到、摸不着,学生难以理解。在过去的理论教学实践中,单靠课堂讲解,很容易使学生失去学习兴趣,而且,不利于培养学生的自主学习能力和动手能力,因此其实验课程显得尤为重要。为适应这一教学需要,我们开设了涉及电磁波空间波长测量、极化和二次辐射等内容的实验课程,以电磁学基本定律为切入点,用场方程来描述场分布,重点反映空间交变场的一些最基本特性,加深学生对理论知识的理解,以实验反哺理论教学,培养通信专业学生具备从事天线、微波电路的设计、开发、调试和工程应用基本能力,培养学生的创新思维和探究意识,实现“让学生用实验的手段和方法研究电磁规律”这个总体目标。

一、改进实验教学方式

由于电磁场与微波类课程理论性强,要求学生具有较强的抽象思维能力,学生反映学习枯燥,因此,实验课程的开设难度较大。如何将看不见、摸不着的电磁场用形象生动的方式展现在学生的面前,让学生更好地掌握微波的基本知识和测量方法,是本门实验课程面临的最大挑战。经过多年教学实践,我们总结出两种生动、直观的教学方法,能充分调动学生的实验学习热情。

1.多媒体动画演示

教师提前准备好关于电磁场与微波理论相关知识的一些多媒体动画(视频或FLASH等),在开始实验前,给学生播放诸如电磁波的传播、驻波的形成、极化特性等动画(视频),直观反映电磁波的特点,将枯燥的电磁波理论变得生动,既能吸引注意力,又有助于学生对抽象基本概念的理解。

2.借助Matlab、HFSS等仿真软件

Matlab具备强大的计算、图像处理功能,在电磁场与微波实验的教学过程中,能发挥重要辅助作用。在做每个实验项目验前,可布置学生提前查找(或由教师直接给出)Matlab的代码,将软件仿真和硬件设备测试结合起来,既能软、硬件互补,深入理解实验原理,又能解决微波设备价格昂贵,台套数不足的难题。Ansoft Designer,Microwave,HFSS等电磁仿真软件,能从不同的角度模拟天线等电磁元器件的特性参数、场分布,为教、学都提供了有力的软件支撑。在仿真实验中,借助软件可再现电磁波的动态特性,包括:行波、驻波的三维动态模拟,波导中电磁波的传播和分布特性,偶极子天线的方向图分布等,通过仿真实验,使学生形象逼真地了解电磁波的空间分布和传播特性,达到硬件实验装置无法实现的目的。

目前,我院将微波分光仪、电磁场参数测量系统、射频参数测量系统三套硬件分别结合不同的软件,进行教学,学生对于电磁基本概念、传播特性、场分布等内容,变得不再抽象,由畏难变得充满兴趣,积极性得到很大提高,能积极思考、提问,并能利用课后时间对思考题进行软件测试,学生对此类课程的学习态度发生了极大转变。

二、改革实验项目及内容

“电磁场与微波实验”课程是学生理解电磁场与微波天线技术理论的重要途径,能有效弥补理论课堂讲授的不足,有助于澄清理论课程学习中的模糊认识认识,能形象、生动的丰富场类课程的内容。实验项目的改革将实现由单纯验证型向设计研究型转变,建立较完善的场类实验教学新体系,逐步增加综合型和创新型实验的比例,增设一些学生感兴趣并富有挑战性的实验内容。将电磁仿真技术应用于场类实验的教学中,将抽象的场问题形象化,能激发学生的学习兴趣,使学生成为实验教学的主体,做到“实践检验理论,理论指导实践,实验课程与理论课程相辅相成”。

1.对于验证性实验,在完成硬件实验的同时,增加软件仿真手段。通过硬件基础实验,学生可观察测量到电磁波波长、频率、波腹、波节、反射、衍射、偏振、极化等电磁现象,深入体会迈克尔逊干涉、布拉格衍射等电磁特性,能加深对电磁波空间传播特性的认识和理解。与此同时,由于电磁波看不见,摸不着,传播过程只能靠想象,引入Matlab软件仿真手段,将使电磁现象鲜活的呈现出来,一目了然。学生可以从程序代码和仿真结果图两方面与硬件实验结果做对比,并对结果进行各种函数后处理,得到所需的结果。例如电磁波的极化实验,硬件设备只能靠微安表感知是椭圆极化还是圆极化,引入Matlab程序,可直观的看到电磁波传播的过程、椭圆极化和圆极化的方向图,与冷冰冰的仪器数据相比,Matlab的图形具有更大的亲和力。

2.对设计研究性实验,采取分小组、分功能模块和电磁仿真软件(Ansoft Designer、HFSS等)总体设计相结合的教学方法。结合学时,将每批同学分为若干课题小组,每个小组3-4人,由每位小组成员分工完成各个软、硬件模块设计,进而组合成整体,完成整个大综合实验。例如做射频图像传输实验时,1人做射频前端发射机软件部分,1人做后端接收机软件部分,另外2人合力完成硬件部分实验,最终4人共同提交完整的实验报告。实验过程中,学生通过搜集资料,小组成员讨论,与教师讨论完成课题期间,软件参数、硬件传输等诸多问题需要不断调试,才能得到预期的目的。无论实验结果如何,这都能极大的锻炼学生发现、分析、解决问题的能力和团队合作能力。

传统“电磁场与微波实验”所开设的实验项目为7个硬件单元验证性实验项目,1个设计研究性实验项目。我们改革的做法是每个验证性实验项目配以电磁仿真软件程序,并在有限学时下减少2-3个单元性实验项目,增加1-2个综合性实验,减少实验个数,增加实验难度、深度和实用性,例如减少电磁波反射衍射、定向耦合器、振荡器设计等实验项目,增加发射机、接收机和天线设计等软、硬件设计,合并两次课时为一次(4个学时),以课题小组的形式各自分别完成一个大综合实验,从硬件和软件角度设计、完成实验,加大了实验难度,提升实验教学质量。

三、实验成绩考核要全面

实验课成绩着重考核学生对实验原理、内容的理解程度,考查学生的动手能力和分析解决问题的能力。因此,成绩评定应看重学生的实验态度、软硬件能力、实验数据、误差等几个方面,总体上呈现出两头小、中间大的正态分布趋势。

1.预习情况

引入“仿真实验”的教学方式,有效弥补了课内学时不足,将学生预习情况按比例记入总成绩,提前给学生布置下一次实验的任务,鼓励学生利用课余时间钻研,预习实验原理,建立好仿真软件的模型,预料在实验室里可能会出现的问题,明确需要验证、观测的现象、参数,明确实验目的。

2.实验过程

教师指导实验教学按互动研讨的方式实施,鼓励学生勤思考,多提问,分析在软件设计和硬件调试测量过程中出现的问题,记录自己的心得体会,重点考察学生分析问题和解决问题的能力。教师根据学生的分析问题的能力和动手解决能力评定成绩,一是考核学生对一些常用仪器设备(示波器、选频放大器等)的熟练使用程度,二是实验数据的准确度,按一定比例记入总成绩。

3.实验报告

实验报告应占总评成绩的50%以上,是学生对实验过程的全面总结,尤其是实验数据的准确记录和思考题的认真程度,反映出了学生做该次实验的体会和质量,所以要求学生不只是完成作业,还需把实验报告当作一次科技论文写作训练,力求数据严谨,概念准确,分析合理,文字简明流畅,这对于培养学生具有严谨的科学作风,良好的职业习惯,扎实的科技论文写作技能方面,都有良好的效果。

4.教学相长

在实验过程前、后,鼓励学生勤思考,多提问,鼓励学生对课程内容和教师授课提出有创新性、建设性的意见,适当记入总评成绩。

四、建立开放实验室

实验课学时不足,这是各高校实验教学面临的一个共同的难题。由于微波设备台套数的限制,学生分组完成“电磁场与微波实验”课程中的综合性、设计性实验时,往往感觉“一次实验2个学时”时间不够,如发射机、接收机实验,需要首先完成HFSS软件设计,再进行硬件的测试。显然,2个学时的时间不够,因此实验室采取开放的方式,方便学生根据自己的时间自由进入实验室。教师在制定教学方案时,可设置2-3个综合性、设计性实验项目为学生自主实验,学生实验前先查阅资料,设计好方案, 按2-4人为一个课题组,经指导教师审查实验方案、可行性后,在实验室开放的数周时间内,自由安排时间进入到开放实验室进行硬件设计、软件编程、系统调试和撰写报告等。

开放实验室使“电磁场与微波实验”课程弹性空间增大,让学生由“被动学习”转向“主动学习”。由于学生可自主安排实验内容,自由选择实验时间,使学生有充分的时间和自由度安排实验内容,极大的调动了学生的学习热情。实践证明,推行实验室开放制度以来,综合性、设计性实验项目比在规定时间内完成的质量高、效果好,学生普遍感觉收获很大,甚至有许多同学将历年的电子设计大赛题目拿到开放实验室里来做,极大锻炼了学生的动手能力,取得很好的收效。

“电磁场与微波实验”课程教学改革旨在解决电磁场理论教学中抽象与具体的矛盾,在熟悉电磁仿真软件的基础上,锻炼学生工程应用中的硬件动手能力。实验课堂有效补充了理论课的动手环节,融知识学习与能力发挥为一体,充分激发了学生的学习热情和兴趣,促进了学生自主分析和解决问题的能力,培养出了大批既懂场理论,有熟悉现代电磁设备的高层次人才。目前正值4G通信大发展的契机,我们在实验教学过程中,应密切围绕课程知识重点,切实提升实验教学质量,为培养学生动手解决实际问题和独立工作能力奠定坚实的实践基础。

参考文献:

[1]杨军,等.面向创新实践的“计算机系统结构”教学改革探索[J].计算机教育,2009,(8).

[2]凌丹,王蔷.电磁场与微波实验教学的改革[J].实验技术与管理,2010,(9).

[3]黄冶,张建华,戴剑华.电磁仿真在场类实验教学中的应用[J].实验室研究与探索,2012,(4).