首页 优秀范文 变频器论文

变频器论文赏析八篇

时间:2022-11-04 09:42:19

变频器论文

变频器论文第1篇

论文摘要:目前我们日常所使用的一些带有或使用变频器驱动系统的设备都会产生大量的高次谐波,这种严重的电磁辐射是我们平时用肉眼看不到的隐形杀手,无论是对我们的身体健康,还是对精密仪器的使用,它都有严重的危害性,而且影响深远。

变频器是运动控制系统中的功率变换器。目前的运动控制系统包含多种学科的技术领域,总的发展趋势是驱

动的交流化、功率变换器的高频化、控制的数字化、智能化和网络化。因此,变频器作为系统的重要功率变换部件,因提供可控的高性能变压变频的交流电源而得到迅猛发展。

变频器的快速发展得益于电力电子技术、计算机技术和自动控制技术及电机控制理论的发展。变频器的发展水平是由电力电子技术、电机控制方式以及自动化控制水平三个方面决定的。当前竞争的焦点在于高压变频器的研究开发生产方面。

随着新型电力电子器件和高性能微处理器的应用以及控制技术的发展,变频器的性能价格比越来越高,体积越来越小,而且厂家仍在不断地提高可靠性,为实现变频器的进一步小型轻量化、高性能化和多功能化以及无公害化而做着新的努力。辨别变频器性能的优劣,一要看其输出交流电压的谐波对电机的影响;二要看对电网的谐波污染和输入功率因数;最后还要看本身的能量损耗(即效率)。这里仅以量大面广的交—直—交变频器为例,阐述其发展趋势:主电路功率开关元件的自关断化、模块化、集成化、智能化;开关频率不断提高,开关损耗进一步降低。

在变频器主电路的拓扑结构方面。变频器的网侧变流器对低压小容量的装置常采用6脉冲变流器,而对中压大容量的装置采用多重化12脉冲以上的变流器。负载侧变流器对低压小容量装置常采用两电平的桥式逆变器,而对中压大容量的装置采用多电平逆变器。对于四象限运行的转动,为实现变频器再生能量向电网回馈和节省能量,网侧变流器应为可逆变流器,同时出现了功率可双向流动的双PWM变频器,对网侧变流器加以适当控制可使输入电流接近正弦波,减少对电网的公害。

脉宽调制变压变频器的控制方法可以采用正弦波脉宽调制控制、消除指定次数谐波的PWM控制、电流跟踪控制、电压空间矢量控制(磁链跟踪控制)。

交流电动机变频调整控制方法的进展主要体现在由标量控制向高动态性能的矢量控制与直接转矩控制发展和开发无速度传感器的矢量控制和直接转矩控制系统方面。微处理器的进步使数字控制成为现代控制器的发展方向。运动控制系统是快速系统,特别是交流电动机高性能的控制需要存储多种数据和快速实时处理大量信息。

近几年来,国外各大公司纷纷推出以DSP(数字信号处理器)为基础的内核,配以电机控制所需的功能电路,集成在单一芯片内的称为DSP单片电机控制器,价格大大降低、体积缩小、结构紧凑、使用便捷、可靠性提高。

在DSP出现之前数字信号处理只能依靠MPU(微处理器)来完成。但MPU较低的处理速度无法满足高速实时的要求。随着大规模集成电路技术的发展,1982年世界上首枚DSP芯片诞生了。这种DSP器件采用微米工艺NMOS技术制作,虽功耗和尺寸稍大,但运算速度却比MPU快了几十倍,尤其在语音合成和编码解码器中得到了广泛应用。DSP芯片的问世标志着DSP应用系统由大型系统向小型化迈进了一大步。随着CMOS技术的进步与发展,第二代基于CMOS工艺的DSP芯片应运而生,其存储容量和运算速度成倍提高,成为语音处理、图像硬件处理技术的基础。80年代后期,第三代DSP芯片问世,运算速度进一步提高,其应用于范围逐步扩大到通信、计算机领域。

90年代DSP发展最快,相继出现了第四代和第五代DSP器件。现在的DSP属于第五代产品,它与第四代相比,系统集成度更高,将DSP芯核及组件综合集成在单一芯片上。这种集成度极高的DSP芯片不仅在通信、计算机领域大显身手,而且逐渐渗透到人们日常消费领域,前景十分可观。

变频器论文第2篇

论文摘要:在通用变频器、异步电动机和机械负载所组成的变频调速传统系统中,当电动机所传动的位能负载下放时,电动机将可能处于再生发电制动状态;或当电动机从高速到低速(含停车)减速时,频率可以突减,但因电机的机械惯性,电机可能处于再生发电状态,传动系统中所储存的机械能经电动机转换成电能,通过逆变器的六个续流二极管回送到变频器的直流回路中。此时的逆变器处于整流状态。这时,如果变频器中没采取消耗能量的措施,这部分能量将导致中间回路的储能电容器的电压上升。如果当制动过快或机械负载为提升机类时,这部分能量就可能对变频器带来损坏。

一、引言

在通用变频器、异步电动机和机械负载所组成的变频调速传统系统中,当电动机所传动的位能负载下放时,电动机将可能处于再生发电制动状态;或当电动机从高速到低速(含停车)减速时,频率可以突减,但因电机的机械惯性,电机可能处于再生发电状态,传动系统中所储存的机械能经电动机转换成电能,通过逆变器的六个续流二极管回送到变频器的直流回路中。此时的逆变器处于整流状态。这时,如果变频器中没采取消耗能量的措施,这部分能量将导致中间回路的储能电容器的电压上升。如果当制动过快或机械负载为提升机类时,这部分能量就可能对变频器带来损坏,所以这部分能量我们就应该考虑考虑了。

在通用变频器中,对再生能量最常用的处理方式有两种:(1)、耗散到直流回路中人为设置的与电容器并联的“制动电阻”中,称之为动力制动状态;(2)、使之回馈到电网,则称之为回馈制动状态(又称再生制动状态)。还有一种制动方式,即直流制动,可以用于要求准确停车的情况或起动前制动电机由于外界因素引起的不规则旋转。

在书籍、刊物上有许多专家谈论过有关变频器制动方面的设计与应用,尤其是近些时间有过许多关于“能量回馈制动”方面的文章。今天,笔者提供一种新型的制动方法,它具有“回馈制动”的四象限运转、运行效率高等优点,也具有“能耗制动”对电网无污染、可靠性高等好处。

二、能耗制动

利用设置在直流回路中的制动电阻吸收电机的再生电能的方式称为能耗制动。

其优点是构造简单;对电网无污染(与回馈制动作比较),成本低廉;缺点是运行效率低,特别是在频繁制动时将要消耗大量的能量且制动电阻的容量将增大。

一般在通用变频器中,小功率变频器(22kW以下)内置有了刹车单元,只需外加刹车电阻。大功率变频器(22kW以上)就需外置刹车单元、刹车电阻了。

三、回馈制动

实现能量回馈制动就要求电压同频同相控制、回馈电流控制等条件。它是采用有源逆变技术,将再生电能逆变为与电网同频率同相位的交流电回送电网,从而实现制动。回馈制动的优点是能四象限运行,如图3所示,电能回馈提高了系统的效率。其缺点是:(1)、只有在不易发生故障的稳定电网电压下(电网电压波动不大于10%),才可以采用这种回馈制动方式。因为在发电制动运行时,电网电压故障时间大于2ms,则可能发生换相失败,损坏器件。(2)、在回馈时,对电网有谐波污染。(3)、控制复杂,成本较高。四、新型制动方式(电容反馈制动)

1、主回路原理

整流部分采用普通的不可控整流桥进行整流,滤波回路采用通用的电解电容,延时回路采用接触器或可控硅都行。充电、反馈回路由功率模块IGBT、充电、反馈电抗器L及大电解电容C(容量约零点几法,可根据变频器所在的工况系统决定)组成。逆变部分由功率模块IGBT组成。保护回路,由IGBT、功率电阻组成。

(1)电动机发电运行状态

CPU对输入的交流电压和直流回路电压νd的实时监控,决定向VT1是否发出充电信号,一旦νd比输入交流电压所对应的直流电压值(如380VAC—530VDC)高到一定值时,CPU关断VT3,通过对VT1的脉冲导通实现对电解电容C的充电过程。此时的电抗器L与电解电容C分压,从而确保电解电容C工作在安全范围内。当电解电容C上的电压快到危险值(比如说370V),而系统仍处于发电状态,电能不断通过逆变部分回送到直流回路中时,安全回路发挥作用,实现能耗制动(电阻制动),控制VT3的关断与开通,从而实现电阻R消耗多余的能量,一般这种情况是不会出现的。

(2)电动机电动运行状态

当CPU发现系统不再充电时,则对VT3进行脉冲导通,使得在电抗器L上行成了一个瞬时左正右负的电压(如图标识),再加上电解电容C上的电压就能实现从电容到直流回路的能量反馈过程。CPU通过对电解电容C上的电压和直流回路的电压的检测,控制VT3的开关频率以及占空比,从而控制反馈电流,确保直流回路电压νd不出现过高。

2、系统难点

(1)电抗器的选取

(a)、我们考虑到工况的特殊性,假设系统出现某种故障,导致电机所载的位能负载自由加速下落,这时电机处于一种发电运行状态,再生能量通过六个续流二极管回送至直流回路,致使νd升高,很快使变频器处于充电状态,这时的电流会很大。所以所选取电抗器线径要大到能通过此时的电流。

(b)、在反馈回路中,为了使电解电容在下次充电前把尽可能多的电能释放出来,选取普通的铁芯(硅钢片)是不能达到目的的,最好选用铁氧体材料制成的铁芯,再看看上述考虑的电流值如此大,可见这个铁芯有多大,素不知市面上有无这么大的铁氧体铁芯,即使有,其价格也肯定不会很低。所以笔者建议充电、反馈回路各采用一个电抗器。

(2)控制上的难点

(a)、变频器的直流回路中,电压νd一般都高于500VDC,而电解电容C的耐压才400VDC,可见这种充电过程的控制就不像能量制动(电阻制动)的控制方式了。其在电抗器上所产生的瞬时电压降为,电解电容C的瞬时充电电压为νc=νd-νL,为了确保电解电容工作在安全范围内(≤400V),就得有效的控制电抗器上的电压降νL,而电压降νL又取决于电感量和电流的瞬时变化率。

(b)、在反馈过程中,还得防止电解电容C所放的电能通过电抗器造成直流回路电压过高,以致系统出现过压保护。

3、主要应用场合及应用实例

正是由于变频器的这种新型制动方式(电容反馈制动)所具有的优越性,近些来,不少用户结合其设备的特点,纷纷提出了要配备这种系统。由于技术上有一定的难度,国外还不知有无此制动方式?国内目前只有山东风光电子公司由以前采用回馈制动方式的变频器(仍有2台在正常运行中)改用了这种电容反馈制动方式的新型矿用提升机系列。

随着变频器应用领域的拓宽,这个应用技术将大有发展前途,具体来讲,主要用在矿井中的吊笼(载人或装料)、斜井矿车(单筒或双筒)、起重机械等行业。总之需要能量回馈装置的场合都可选用。

变频器论文第3篇

广东省韶关钢铁集团有限公司(以下简称韶钢)位于韶关市南郊,占地面积8320m2。韶钢是中国500家最大工业企业和国家512家重点企业之一,世界100家大型钢铁企业排行第95位,具有年产钢160万吨以上能力。炼铁厂是韶钢的一个主体生产厂,负责公司所需铁水和铁块冶炼。炼铁厂现有6座高炉,总炉容2405m3,年产生铁230万吨。

高炉冶炼铁水过程中产生大量的熔渣,通常是用大流量的中压水将其降温并冲散,同时输送到水渣池回收,作为炼铁生产的副产品。高炉生产是不间断的,一般情况下每天出铁15次,在高炉出铁前、后各放一次渣,两次出渣时间约30min,在此时间内要求水冲渣系统的水泵满负荷工作,其余时间水泵只需保持约30%水流量防止管道堵塞即可。我厂4#-高炉使用ZGB-300型冲渣泵,机组有关数据如附表

原系统运行时,起动前管道进出水阀门关闭,起动后阀门开度约90%,机组全速运行,电网电压6300V,电机运行电流33A,功率因数81.6%,耗电功率294kW。不需冲渣水时通过调节阀门在30%来调节水流量(此时电机电流25A),耗电功率214kW,一方面导致大量的节能损失,另一方面频繁操作阀门,致使其使用寿命大大降低,增加了停产更换阀门的时间,为此我厂决定对4#高炉冲渣泵进行改造。

2系统方案选择

在选择调速方案时,我们曾从节省投资出发考虑过使用调速型液力偶合器,但由于需将原机组的混凝土基础全部打掉重新捣制,工作量大、施工周期长,将影响正常生产,为此决定采用高压变频调速器。

面对当今国内外的众多高压变频产品,2001年初,我们组织专业人员对国内外高电压、大功率的变频器这一新技术进行了全面慎重的考察论证,最后决定采用国产高电压、大功率变频调速装置,原因如下:

(1)目前国产高压大功率变频器已具备和国外产品相抗衡的技术水平;

(2)更符合中国国情,如:变频器性能更适合国内电网状况、全中文操作界面等;

(3)产品备件采购方便;

(4)售后服务及时、周到;

(5)性价比高于国外同类产品。

通过招标形式,我公司选用了国内实力雄厚的成都佳灵电气制造有限公司生产的JCS-6kV/400kWIGBT直接串联高压变频器。

3佳灵IGBT直接串联高压变频器原理及特点

目前,低压变频调速技术已比较成熟,但在高压变频调速技术方面,由于变频器的核心功率器件耐压有限,所以高压变频器并不象低压变频器一样具有简单统一的拓扑结构,从而产生了当今各种各样的结构。

佳灵高压变频器由于解决了IGBT直接串联这一世界性难题,使其具有和低压变频器一样简单的结构。该产品成功融入IGBT直接串联技术、正弦波技术、抗共模电压技术和直接速度控制(DSC)技术,使得产品具有与其它形式(单元串联多重化、中心点箝位三电平等)产品无法比拟的优越性,该产品已被列为“国家重点技术创新项目”。

图1可以看出:该系统由电网高压直接经高压断路器进入变频器,经过高压二极管全桥整流、直流平波电抗器和电容滤波,再经逆变器逆变,加上正弦波滤波器,简单易行地实现高压变频输出,直接供给高压电动机。其优点在于:

(1)整个系统没有输入输出变压器,体积小重量轻,仅为其他品牌体积的1/2,减少了基建投资,解决了我厂基建空间不足的实际情况。

(2)由于该变频器结构简单,无变压器,所以故障点大大减少,整个系统效率高,额定负载效率98%以上。

(3)采用正弦波技术,大大提高输出波形质量,输出电压谐波含量小于3%,特有的共模技术使整个系统的共模电压及输出du/dt值完全符合MGI的标准,消除了电机振动现象,减小了轴承和叶片的机械应力,不需更换我厂原有的旧电机,无需降容使用。

(4)采用用直接速度控制技术(DSC),响应速度高于其它同类产品,转矩脉动小,低速仍能保持平滑静音运行。

(5)可实现工频旁路,检修方便,而且具有完善的系统保护功能。

4改造方案

由电机转速公式可知:

n=60f×(1-s)/p

其中:s—转差率

n—转子实际转数(r/min)

f—电流频率

p—电机的极对数

可见,只要改变电机的频率f,就可以实现电机的转速调节,高电压大功率变频器通过控制IGBT(绝缘栅双极型电力场效应管)的导通和关断,使输出频率连续可调。而且是随着频率的变化,输出电流、电压、功率都将发生变化,即负荷大时转速大,输出功率大,负荷小时转速小,输出功率也小。

由流体力学可知:

Q′=Q(n′/n)

H′=H(n′/n)2

P′=P(n′/n)3

当泵机低于额定转速时节电为

E=〔1-(n′/n)3〕×P×T(kWh)

式中:n—额定转速

n′—实际转速

P—额定转速时电机功率

T—工作时间

可见,通过变频改造,冲渣泵流量Q、压力H及轴功率P都将发生较大的改变,不但节能而且大大提高了设备运行性能。

以上公式为本厂提供了充分理论依据,我厂根据冲渣泵的实际特性对其进行了具体改造,冲渣泵在冲渣时工作在49.5Hz,在不冲渣时工作在25Hz,考虑到工艺对调速精度要求不是很高,本系统只采用开环控制并在高炉值班室操作,需冲渣时给调节系统一个“1”的信号,电机高速运行,不需冲渣时将此信号取消,电机低速运行,取得了很好的节能效果。

5改造后的系统实际运行状况

变频器到厂后,我厂技术人员同成都佳灵电气制造有限公司派出的技术人员一道,经过几天的安装,一次性调试成功。于2001年11月28日开始正式运行,现已累计运行18个月,经过反复多种测试各运行参数一直正常,变频器质量性能良好,安全可靠,各项指标均达到了设计要求:

(1)谐波抑制效果良好。电压谐波含量小于3%,符合IEEE519-1992和GB/T14549-93标准。

(2)各种保护功能完善。过流、过压、欠压、故障保护等功能可靠,并且考虑了外部电网的防雷击等多环节保护功能。

(3)各种指示功能完备。具有输入、输出电流和电压、运行频率、故障显示、运行状态指示等功能。

(4)操作简便。同普通的低压变频器的功能操作方式相似,功能设置和调整简单方便。

6节能量的验证及测试方法

(1)测量无变频调速时另一台机组在工频电压下运行的电压、电流、功率因数。

(2)测量有变频调速时机组在49.5Hz频率电压下运行变频器输入端的电压、电流、功率因数。

(3)测量有变频调速时机组在25Hz频率电压下运行变频器输入端的电压、电流、功率因数。

(4)测量仪表型号为:电压互感器:JDZJ-6;电压表:16L1-V;电流互感器:LZZB-1050/5;电流表:16L1-A;功率因数钳型表:HIOI-3266。

通过上述测量参数,根据P=1.73U·Icosφ计算得出P50=294kW、P49.5=214kW、P25=82kW。

7改造效益

(1)节能经济效益

机组49.5Hz运行和无变频器运行相比可节省功率ΔP1=P50-P49.5=80kW

机组25Hz运行和无变频器运行相比可节省功率ΔP2=214kW-P25=132kW

年节电量:ΔW=(H1ΔP1+H2ΔP2)=365(7.5×80+16.5×132)=1013970kWh

(注:每年按365天计,H1:冲渣时间=15×30/60=7.5小时;H2:不冲渣时间=24-7.5=16.5小时)

经济效益:ΔW电价=1013970×0.56=567823元(注:韶钢厂工业电价0.56元/kWh)

(2)节约维修费用

因冲渣水含有大量的炉渣,原系统管道和阀门在含渣水的高速冲刷下,很短时间内管壁就会变薄、阀门密封损坏须重新更换,一般情况下每年需维修费用约15万元。经变频调速改造后,有一半时间内管道的水流速度降低,磨擦减少,管道和阀门的使用寿命大大延长,每年可降低维修费用约1/3,即5万元。

(3)实现电机软起动功能,延长了电机寿命,大大减少了冲渣泵故障发生率。

(4)提高了自动化水平,节约了大量工业用水。

由上述可知,综合经济效益每年可达60多万元,一年即可全部收回成本。

8结论

通过对冲渣泵系统的变频调速的技术改造,我厂使用了成都佳灵电气制造有限公司制造的IGBT直接串联高压变频器,经过较长时间的运行检验,证明该产品性能可靠、功能齐全、技术先进,说明国内自主开发的高压变频器在技术上已经处于世界先进水平。由于IGBT直接串联高压变频器无输入输出变压器、体积小、性价比高、综合性能好等方面均超过了国内外其它产品,是新一代高性能高压变频产品的代表,为高压变频调速技术在我厂内其它工序的技术改造提供了一条可行的途径,在高压变频改造领域具有极大的推广价值。

参考文献

变频器论文第4篇

近年来随着电力电子技术、功率半导体器件及变频控制理论的发展,变频器作为一种智能控制电源已被广泛应用于各行业,90年代初期主要以进口品牌为主如富士、三菱、西门子、ABB等,90年代中期国产变频器日渐出现在市场上,主要以通用型变频器为主。目前国产变频器技术已逐渐成熟,国产变频器市场占有率也逐渐提高,作为国内变频器专业生产厂家之一的深圳康沃电气技术有限公司,经过短短几年时间的发展,康沃变频器凭借其优越的性能,日渐被客户所接受。康沃公司目前生产的变频器主要有通用型G1/G2系列、风机水泵专用型P1/P2系列、注塑机专用型ZS/ZC系列及高性能单相变频器S1系列,其它各类专用变频器、更高性能的矢量型变频器也将陆续推向市场。本文主要讲述康沃变频器通用型在应用中出现的常见故障及处理方法,以便用户参考。

2通用型变频器主电路

目前市场上国产变频器主要以低压通用型变频器为主,为下文叙述方便,现简要介绍通用型变频器的主电路结构,从变频器结构上分有交-交变频器与交-直-交变频器,从变频性质分主要电压源型变频器与电流源型变频器,目前国内生产的变频器主要以电压源型交-直-交变频器为主。

其主电路主要由整流电路、滤波电路、逆变电路及制动单元等几部分构成,其中IGBT(绝缘栅双极晶体管)构成了变频器主要硬件,各部分电路功能简述如下:

1整流电路

由VD1~VD6组成三相桥式全波整流电路将三相交流电整流成直流电。

2滤波电路

整流电路输出的直流电压为脉动的直流电压,因而需滤波电路滤去电压波纹,同时它还在整流电路与逆变电路起到储能作用。

3逆变电路

由开关管V1~V6构成逆变电路将直流电压逆变成三相频率、电压可调的交流电以驱动三相电动机,是变频器实现变频的关键环节。

4限流电路

由限流电阻R及开关K构成,由于上电瞬间滤波电容端电压为零,上电瞬间电容充电电流较大,过大的电流可能损坏整流电路,为保护整流电路在变频器上电瞬间限流电阻串联到直流回路中,当电容充电到一定时间后通过开关K将电阻短路。

5制动电路

由制动电阻RB及开关管VB构成,主要作用是用于消耗电动机反馈回来的能量,避免过高的泵升电压损坏变频器。

康沃通用型G/P系列变频器根据功率等级的不同,所选用的IGBT主要有欧派克、三菱、东芝等不同品牌,变频器功率在18.5kW以下的机型主电路主要采用集整流、逆变、制动电路和温度检测为一体的七单元模块构成,22kW及以上的机型采用整流模块和三路两单元逆变模块构成。

3康沃变频器常见故障及处理方法

随着应用的不断推广,康沃品牌越来越受用户欢迎,为让用户进一步了解康沃变频器、方便用户使用,现将康沃变频器在使用中常出现的故障现象及处理方法例举如下:

(1)故障P.OFF

康沃变频器上电显示P.OFF延时1~2s后显示0,表示变频器处于待机状态。在应用中若出现变频器上电后一直显示P.OFF而不跳0现象,主要原因有输入电压过低、输入电源缺相及变频器电压检测电路故障,处理时应先测量电源三相输入电压,R、S、T端子正常电压为三相380V,如果输入电压低于320V或输入电源缺相,则应排除外部电源故障。如果输入电源正常可判断为变频器内部电压检测电路或缺相保护故障,对于康沃G1/P1系列90kW及以上机型变频器,故障原因主要为内部缺相检测电路异常,缺相检测电路由两个单相380V/18.5V变压器及整流电路构成,故障原因大多为检测变压器故障,处理时可测量变压器的输出电压是否正常。

(2)故障ER08

康沃变频器出现ER08故障代码表示变频器处于欠压故障状态。主要原因有输入电源过低或缺相、变频器内部电压检测电路异常、变频器主电路异常。通用变频器电压输入范围在320V~460V,在实际应用中变频器满载运行时,当输入电压低于340V时可能会出现欠压保护,这时应提高电网输入电压或变频器降额使用;若输入电压正常,变频器在运行中出现ER08故障,则可判断为变频器内部故障,如图1示可能为主回路中KS接触器跳开,使限流电阻在变频器运行时串联到主回路中,这时若变频器带负载运行便会出现ER08故障,这时可排除是否为接触器损坏或接触器控制电路异常;若变频器主回路正常,出现ER08报警的原因大多为电压检测电路故障,一般变频器的电压检测电路为开关电源的一组输出,经过取样、比较电路后给CPU处理器,当超过设定值时,CPU根据比较信号输出故障封锁信号,封锁IGBT,同时显示故障代码。(3)故障ER02/ER05

故障代码ER02/ER05表示变频器在减速中出现过流或过压故障,主要原因为减速时间过短、负载回馈能量过大未能及时被释放。若电机驱动惯性较大的负载时,当变频器频率(即电机的同步转速)下降时电机的实际转速可能大于同步转速,这时电机处于发电状态,此部分能量将通过变频器的逆变电路返回到直流回路,从而使变频器出现过压或过流保护。现场处理时在不影响生产工艺的情况下可延长变频器的减速时间,若负载惯性较大,又要求在一定时间内停机时,则要加装外部制动电阻和制动单元,康沃G2/P2系列变频器22kW以下的机型均内置制动单元,只需加外部制动电阻即可,电阻选配可根据产品说明中标准选用,对于功率22kW以上的机型则要求外加制动单元和制动电阻。

ER02/ER05故障一般只在变频器减速停机过程中才会出现,如果变频器在其它运行状态下出现该故障,则可能是变频器内部的开关电源部分,如电压检测电路或电流检测电路异常而引起的。

(4)故障ER17

代码ER17表示电流检测故障,通用变频器电流检测一般采用电流传感器,通过检测变频器两相输出电流来实现变频器运行电流的检测、显示及保护功能,输出电流经电流传感器(如图2示中H1、H2为电流传感器)输出线性电压信号,经放大比较电路输送给CPU处理器,CPU处理器根据不同信号判断变频器是否处于过电流状态,如果输出电流超过保护值,则故障封锁保护电路动作,封锁IGBT脉冲信号,实现保护功能。

康沃变频器出现ER17故障主要原因为电流传感器故障或电流检测放大比较电路异常,前者可通过更换传感器解决,后者大多为相关电流检测IC电路或IC芯片工作电源异常,可通过更换相关IC或维修相关电源解决

(5)故障ER15

代码ER15表示逆变模块IPM、IGBT故障,主要原因为输出对地短路、变频器至电机的电缆线过长(超过50m)、逆变模块或其保护电路故障。现场处理时先拆去电机线,测量变频器逆变模块,观察输出是否存在短路,同时检查电机是否对地短路及电机线是否超过允许范围,如上述均正常,则可能为变频器内部IGBT模块驱动或保护电路异常。一般IGBT过流保护是通过检测IGBT导通时的管压降动作的。

当IGBT正常导通时其饱和压降很低,当IGBT过流时管压降VCE会随着短路电流的增加而增大,增大到一定值时,检测二极管DB将反向导通,此时反向电流信号经IGBT驱动保护电路送给CPU处理器,CPU封锁IGBT输出,以达到保护作用。如果检测二极管DB损坏,则康沃变频器会出现ER15故障,现场处理时可更换检测二极管以排除故障。

(6)故障ER11

ER11故障表示变频器过热,可能的原因主要有:风道阻塞、环境温度过高、散热风扇损坏不转及温度检测电路异常。现场处理时先判断变频器是否确实存在温度过高情况,如果温度过高可先按以上原因排除故障;若变频器温度正常情况下出现ER11报警,则故障原因为温度检测电路故障。康沃22kW以下机型采用的七单元逆变模块,内部集成有温度元件,如果模块内此部分电路故障也会出现ER11报警,另一方面当温度检测运算电路异常时也会出现同样故障现象。

变频器论文第5篇

关键词: RS485;PLC;变频器;串行通信;计算机论文 

中图分类号: TN773 文献标识码:A 

1 PowerFlex 400P变频器中Modbus的应用 

1.1通信设置 

硬件连接好后,要激活变频器与外部设备之间的Modbus通信,需要设置如下参数(见表1)。 

1.2 技术参数 

2 S7-300 PLC中Modbus的应用 

S7-300PLC本身不支持RS485通信,需要通过串行通讯模板CP341来实现。 

2.1 Step7组态设置 

进入硬件配置画面,双击CP341模板,点击Parameter…配置参数,在Protocol选型中选择MODBUS Master,参照变频器设置波特率、数据位、停止位、奇偶校验等内容,设置好后需要通过Load Drivers装载到PLC中。 

2.2 程序设计 

本文主要采用Modbus主站轮询方式通过FB7/FB8功能块进行读取/发送数据。其中轮询方式采用如图3所示。在系统初始化完成后,手动启动第一次轮询作业,先轮询1#从站。给1#从站发送查询请求后,等待1#从站的响应,如果在指定的延时时间内接收到1#从站返回的数据,则执行2#从站。如果在指定时间内不能接收到从站的返回数据或接收错误,则跳过本站,执行下一个从站。 

变频器论文第6篇

1选型

一台喂料油隔泵采用变频控制,电机型号为JR127_10、115kW,Ue=380V,Ie=231A,使用FRNll0P7-4EX变频器。运行中发现有时虽然给定频率高,但实际频率调不上去、变频器跳闸频繁,故障指示为“OLl”,即变频器过载。经检查,变频器的额定电流为210A,而油隔泵电机在高下料量时运行电流在220A左右波动,驱动转矩达到极限设定,使频率不能上调,运行电流大于变频器额定电流,变频器过流跳停。分析认为其原因是变频器容量选择偏小。

变频器的选型应满足以下条件:

(1)电压等级与控制电机相符。

(2)额定电流为控制电机额定电流的1.1~1.5倍。

(3)根据被控设备的负载特性选择变频器的类型。

油隔泵为恒转矩负载,最好选用驱动转矩极限范围宽的G7变频器。选择FRNl60G7_4EX,变频器额定电压为400V,额定输出电流为304A,驱动转矩极限为150%,改用FRNl60G7。4EX后,上述问题再也没有发生。

2安装环境

由于变频器集成度高,整体结构紧凑,自身散热量较大,因此对安装环境的温度、湿度和粉尘含量要求高。山西铝厂的变频器安装于操作室内,因安装车间属于干法车间,变频器运行环境差,操作室粉尘多,夏季室内温度高,曾多次发生变频器故障。在对操作室进行密封和加冷却设施后,情况大为改善。后来因操作室集中空调冷凝水较多,距离柜子太近,发生了一起变频器控制板元件损坏的故障。可见在安装变频器的同时,必须为变频器提供一个好的运行环境。

3参数设定

变频器的设定参数多,每个参数均有一定的选择范围,使用中常常遇到因个别参数设置不当,导致变频器不能正常工作的现象。

(1)外加起停按钮及电位器调频无效。变频器出厂时设定为通过键盘面板操作,外部控制无效,端子FWD_CM用短接片短接。选择外部起停及调频控制时,必须将该短接片去掉。出现上面问题,可能是FWD,CM短接片未取掉,操作方式和调频方式参数选择错误所致,应重点对该部分进行检查。

(2)变频器在电机空载时工作正常,但不能带载起动。这种问题常常出现在恒转矩负载。山西铝厂一台FRNl60P7。4EX变频器在试车时电机空试正常、但一带负荷即跳闸,提高了加减速时间后仍无法带载。继续检查转矩提升值,将转矩提升值由“2”改为“7”后,提高了低频时的电压输出。改善了低频时的带载特性,电机带载正常。遇到上述问题时应重点检查加、减速时间设定及转矩提升设定值。

(3)变频器投入运行、电机还未起动就过载跳停。山西铝厂一台7.5kW_6极电机采用变频控制,变频器在投入运行起动时、频繁跳停。经查原设定时将偏置频率设定为2H2、变频器在接到运行指令但未给出调频信号之前、受控电机将一直接收2H2的低频运行指令而无法起动。经测定该电机的堵转电流达到47A,约为电机额定电流3倍,变频器过载保护动作属正常。改偏置频率为0Hz,电机起动正常。

(4)频率已经达到较大值,但电机转速仍不高。一台新投用的变频器频率设置显示已经很大,但电机转速明显较同频率下其它电机低。检查频率增益设定值为150%。由频率设定信号增益定义可知:设定增益为设定模拟频率信号对输出频率的比率,假设设定频率为30Hz,实际输出频率仅为20H2。将设定增益改为100%后,问题得到解决。

(5)频率上升到一定数值,继续向上调节时,频率保持在一定值不断跳跃,转速不能提高。变频器工作时,将自动计算输出转矩,并将输出转矩限制在设定值内。如果驱动转矩设定值偏小,将可能因输出转矩受到限制,使变频器输出频率达不到给定频率。遇到上面的问题,应检查驱动转矩设定值是否偏小,变频器的容量是否偏小,再设法解决。

4故障诊断

变频器拥有较强的故障诊断功能,对变频器内部整流、逆变部分,CPU及通讯与电动机等故障进行保护。变频器在保护跳闸后故障复位前,将一直显示故障代码。根据故障指示代码确定故障原因,可缩小故障查找范围,大大减少故障查找时间。

(1)一台变频器在清扫后启动时,显示“OH2”故障指示跳停,OH2指变频器外部故障。出厂时连接外部故障信号的端子“THR”与“CM”之间用短接片短接,因这台变频器没有加装外保护,THR_CM仍应短接。经检查,由于66THR”与“CM’之间的短接片松动,在清扫时掉下。恢复短接片后变频器运行正常。

(2)变频器一启动就跳停,故障指示为“OCl”、OCl为加速时过电流,怀疑为电机故障,将变频器与电机连接线断开,检查电机绕组匝间短路。更换电机后变频器运行正常。

(3)夏季如果变频器操作室的制冷、通风效果不良,环境温度升高,则经常发生“OHl”、“OH3”过热保护跳停。这时应检查变频器内部的风扇是否损坏,操作室温度是否偏高,应采取措施进行强制冷却,保证变频器安全过夏。

(4)变频器在频率调到15Hz以上时,“LU”欠电压保护动作。“LU”保护信号指整流电压不足。我们从整流部分向变频器电源输入端检查,发现电源输入侧缺相,由于电压表从另外两相取信号,电压表指示正常,没有及时发现变频器输入侧电源缺相。输入端缺相后,由于变频器整流输出电压下降,在低频区、因充电电容的作用还可调频,但在频率调至一定值后,整流电压下降较快、造成变频器“LU”跳闸。

5维护

变频器运行过程中,可以从设备外部目视检查运行状况有无异常,专职点检员可以通过键盘面板转换键查阅变频器的运行参数,如输出电压、输出电流、输出转矩、电机转速等,掌握变频器日常运行值的范围,以便及时发现变频器及电机问题。此外,还要注意以下几点:

(1)设专人定期对变频器进行清扫、吹灰,保持变频器内部的清洁及风道的畅通。

(2)保持变频器周围环境清洁、干燥。严禁在变频器附近放置杂物.

变频器论文第7篇

关键词:变频器供水行业应用

引言

一般城市管网的水压无法完全满足所有用水居民的用水需求,绝大部分用户须通过提升水压才能满足用水要求。以前大多采用传统的水塔,高位水箱等等增压设备,它们都必须由水泵以高出实际用水高度的压力提升水量,其结果大大增加了能量损耗。

一、新、旧泵的测试

例如,我公司对6sh-655kw成套机电设备做如下测试:

75KW三垦变频器直拖旧泵测试数据表:

75KW三垦变频器直拖新泵测试数据表

由上述测试结果可得老式供水方式被全新变频供水方式取代具有多项优点:

1.1变频供水能灵活控制供水压力。

1.2采用变频供水节电效果明显。

1.3当异步电机在全压启动时从静止状态加速到额定转速所需时间小于0.5秒,这意味着在不足0.5秒的时间里,水的流量从零猛增到额定流量,在极短时间内流量的巨大变化将引起对管道的压强过高或过低的冲击,压力过高会爆管而过低导致管子的瘪塌。直接停机同样会引起压力冲击。从上表测试结果可见使用变频器调速后,可通过对加减速时间的合理预置来延长启动和停止过程,合理控制供水压力减少管道冲击,最大限度保护管网,管件,同时也提高电机水泵的使用寿命。从上述测试还可以看出泵老化时严重影响出水量供水压力,维护维修不及时泵效率会大幅降低。

二、变频器的节能效果

变频器节能效果实际工作中更可观。例如,我公司有一水厂,水厂原供水方案为280KW机电系统一工一变两套系统向市区管网以0.18Mpa压力供水,工频供水系统为控制供水压力要采用勒阀门的方法。去年经技术改造改为两套供水系统均用变频器供水,严禁勒阀门通过变频器调频来控制供水压力。改变供水方法后该水厂当月电费较前月少近五万元,当年公司电费较上年减少近六十万元,可见使用变频器供水节能效果很明显,长期使用变频器经济效益可观。

变频调速恒压供水系统,经历了逐步完善的过程。综合早期的单泵恒压供水系统与近几年来被行业内人士普遍使用的多泵恒压调速供水系统诸多供水方式来看,我认为最优的恒压供水系统应为单泵直拖恒压供水系统。

三、各种供水方式比较

例如,我单位现使用以下几种供水方式(以富士变频器为例):

3.1变频器直拖电机变压(变流量)供水:优点:接线简单,使用电器件少,完全启用变频器自身功能运行稳定,节电效果较明显,维修率较低。缺点:只能变压(流量)运行,节能空间有剩余。

3.2多泵运行方式:控制回路用PLC(可编程控制器)设计以三泵为例:优点:可控制实现恒压(恒流量)供水。缺点:只有一台泵变频调速运行,其余各泵均工频运行,节能一般,部分能量未被挖掘出来。维修工作量较大,运行稳定性较好。:

变频器论文第8篇

1选型

一台喂料油隔泵采用变频控制,电机型号为JR127_10、115kW,Ue=380V,Ie=231A,使用FRNll0P7-4EX变频器。运行中发现有时虽然给定频率高,但实际频率调不上去、变频器跳闸频繁,故障指示为“OLl”,即变频器过载。经检查,变频器的额定电流为210A,而油隔泵电机在高下料量时运行电流在220A左右波动,驱动转矩达到极限设定,使频率不能上调,运行电流大于变频器额定电流,变频器过流跳停。分析认为其原因是变频器容量选择偏小。

变频器的选型应满足以下条件:

(1)电压等级与控制电机相符。

(2)额定电流为控制电机额定电流的1.1~1.5倍。

(3)根据被控设备的负载特性选择变频器的类型。

油隔泵为恒转矩负载,最好选用驱动转矩极限范围宽的G7变频器。选择FRNl60G7_4EX,变频器额定电压为400V,额定输出电流为304A,驱动转矩极限为150%,改用FRNl60G7。4EX后,上述问题再也没有发生。

2安装环境

由于变频器集成度高,整体结构紧凑,自身散热量较大,因此对安装环境的温度、湿度和粉尘含量要求高。山西铝厂的变频器安装于操作室内,因安装车间属于干法车间,变频器运行环境差,操作室粉尘多,夏季室内温度高,曾多次发生变频器故障。在对操作室进行密封和加冷却设施后,情况大为改善。后来因操作室集中空调冷凝水较多,距离柜子太近,发生了一起变频器控制板元件损坏的故障。可见在安装变频器的同时,必须为变频器提供一个好的运行环境。

3参数设定

变频器的设定参数多,每个参数均有一定的选择范围,使用中常常遇到因个别参数设置不当,导致变频器不能正常工作的现象。

(1)外加起停按钮及电位器调频无效。变频器出厂时设定为通过键盘面板操作,外部控制无效,端子FWD_CM用短接片短接。选择外部起停及调频控制时,必须将该短接片去掉。出现上面问题,可能是FWD,CM短接片未取掉,操作方式和调频方式参数选择错误所致,应重点对该部分进行检查。

(2)变频器在电机空载时工作正常,但不能带载起动。这种问题常常出现在恒转矩负载。山西铝厂一台FRNl60P7。4EX变频器在试车时电机空试正常、但一带负荷即跳闸,提高了加减速时间后仍无法带载。继续检查转矩提升值,将转矩提升值由“2”改为“7”后,提高了低频时的电压输出。改善了低频时的带载特性,电机带载正常。遇到上述问题时应重点检查加、减速时间设定及转矩提升设定值。

(3)变频器投入运行、电机还未起动就过载跳停。山西铝厂一台7.5kW_6极电机采用变频控制,变频器在投入运行起动时、频繁跳停。经查原设定时将偏置频率设定为2H2、变频器在接到运行指令但未给出调频信号之前、受控电机将一直接收2H2的低频运行指令而无法起动。经测定该电机的堵转电流达到47A,约为电机额定电流3倍,变频器过载保护动作属正常。改偏置频率为0Hz,电机起动正常。

(4)频率已经达到较大值,但电机转速仍不高。一台新投用的变频器频率设置显示已经很大,但电机转速明显较同频率下其它电机低。检查频率增益设定值为150%。由频率设定信号增益定义可知:设定增益为设定模拟频率信号对输出频率的比率,假设设定频率为30Hz,实际输出频率仅为20H2。将设定增益改为100%后,问题得到解决。

(5)频率上升到一定数值,继续向上调节时,频率保持在一定值不断跳跃,转速不能提高。变频器工作时,将自动计算输出转矩,并将输出转矩限制在设定值内。如果驱动转矩设定值偏小,将可能因输出转矩受到限制,使变频器输出频率达不到给定频率。遇到上面的问题,应检查驱动转矩设定值是否偏小,变频器的容量是否偏小,再设法解决。

4故障诊断

变频器拥有较强的故障诊断功能,对变频器内部整流、逆变部分,CPU及通讯与电动机等故障进行保护。变频器在保护跳闸后故障复位前,将一直显示故障代码。根据故障指示代码确定故障原因,可缩小故障查找范围,大大减少故障查找时间。

(1)一台变频器在清扫后启动时,显示“OH2”故障指示跳停,OH2指变频器外部故障。出厂时连接外部故障信号的端子“THR”与“CM”之间用短接片短接,因这台变频器没有加装外保护,THR_CM仍应短接。经检查,由于66THR”与“CM’之间的短接片松动,在清扫时掉下。恢复短接片后变频器运行正常。

(2)变频器一启动就跳停,故障指示为“OCl”、OCl为加速时过电流,怀疑为电机故障,将变频器与电机连接线断开,检查电机绕组匝间短路。更换电机后变频器运行正常。

(3)夏季如果变频器操作室的制冷、通风效果不良,环境温度升高,则经常发生“OHl”、“OH3”过热保护跳停。这时应检查变频器内部的风扇是否损坏,操作室温度是否偏高,应采取措施进行强制冷却,保证变频器安全过夏。

(4)变频器在频率调到15Hz以上时,“LU”欠电压保护动作。“LU”保护信号指整流电压不足。我们从整流部分向变频器电源输入端检查,发现电源输入侧缺相,由于电压表从另外两相取信号,电压表指示正常,没有及时发现变频器输入侧电源缺相。输入端缺相后,由于变频器整流输出电压下降,在低频区、因充电电容的作用还可调频,但在频率调至一定值后,整流电压下降较快、造成变频器“LU”跳闸。

5维护

变频器运行过程中,可以从设备外部目视检查运行状况有无异常,专职点检员可以通过键盘面板转换键查阅变频器的运行参数,如输出电压、输出电流、输出转矩、电机转速等,掌握变频器日常运行值的范围,以便及时发现变频器及电机问题。此外,还要注意以下几点:

(1)设专人定期对变频器进行清扫、吹灰,保持变频器内部的清洁及风道的畅通。

(2)保持变频器周围环境清洁、干燥。严禁在变频器附近放置杂物.