首页 公文范文 岩土工程深基坑支护施工技术3篇

岩土工程深基坑支护施工技术3篇

时间:2023-01-19 10:25:20 关键词: 岩土工程 深基坑 支护施工
摘要:在建筑工程中,为了保证建筑工程的综合质量,必须加强基础工程的建设,确保高水平地完成基础工程,只有深入了解深基坑支护技术,明确深基坑支护施工技术的具体要求,将深基坑支护施工技术应用于建筑工程中,才能够有效建筑工程质量,因此对岩土工程深基坑支护施工技术进行详细探究具有十分重要的现实意义。

岩土工程深基坑支护施工技术3篇

岩土工程深基坑支护施工篇1

1深基坑支护现状

随着我国综合国力的提高,越来越多的高层建筑开始出现,在有限的土地资源下,高层建筑是城市建筑发展的未来趋势,在这样的时代背景下,对基坑的安全性、稳定性要求更为严格。在传统岩土工程施工中,基坑技术类型单一,一般通过放坡开挖、人工挖掘方式进行,导致基坑深度有限,无法满足时代需求与高层建筑发展趋势。近年来,随着深基坑支护技术的出现,有效地解决了传统基坑存在的问题,取代了传统基坑,成为岩土工程的核心。目前,随着我国建筑事业的发展,支护技术不断更新、改进,有效地解决了强度低、工艺单一的局限性,为高层建筑施工创造了先决条件。但由于我国特殊国情,不同地域岩土工程特点不同,即使深基坑支护技术替代传统技术,并取得较为显著的成绩,但在实际施工中同样存在诸多问题【1】。

2深基坑支护技术

随着深基坑支护技术的出现,支护类型的增多,为不同类型岩土工程提供了选择性。常用的支护技术有以下3种:1)地下连续墙支护技术。其具备防渗性良好、整体性良好、结构刚度大、适应能力强等优点,可应对各种复杂环境与地理条件,是一种可靠、实用的支护技术。当在软土层实施岩土工程、地下管线、周围相邻建筑对位移与沉降要求较高时,一般可采用这种支护结构。其具有可减少工程对环境的影响、对地质条件要求低等优点,如进入风化岩层或遇到砂卵石地层,通常可采用连续墙支护技术。此外,其整体性好、刚度大,可用于超深支护技术结构,但该支护技术对灰浆液的处理工艺复杂、造价较高。2)深层搅拌支护。这种支护方式主要通过机械装置将水泥、石灰进行搅拌,使其发生物理与化学改变,固化砂石、软土,起到良好的防护与支护作用。这种支护方式更有利于节省资金,但技术施工过程相对较为复杂,一般对7m左右深基坑使用效果更好。3)排桩支护。通过打孔、挖柱对柱列形式钢筋混凝土结构进行处理,并根据提前设计的形式进行排列,最终发挥抵挡沙土的作用。该种支护方式具有工程资源节省、工程进度较快的优点。但这种方式的不足在于必须使用混凝土帽石对2个柱子进行固定,达到整体结构稳定的作用,预防水、沙土的进入【2】。对于工程作业中所产生的泥土,为避免其对支护设施造成破坏,必须远离支护设施,以保证施工作业人员的安全。同时,为预防深基坑坍塌,作业产生的泥土必须远离深基坑。深基坑支护作业支护方式,必须根据深基坑深度进行选择,以确保支护的有效性与安全性。

3当前深基坑支护存在的不足

3.1支护结构设计不合理

我国是通过极限平衡理论计算深基坑支护结构,但设计结果与实际受力存在较大出入。以相关工程实践证明:从理论上讲深基坑支护结构匹配极限理论计算安全系数,但在实际工程施工中,受到支护机构系数影响,支护结构与相关要求存在出入,无法达到相关要求。

3.2未充分进行深基坑取样

根据相关规定,岩土工程开展中,需要对地基土层取样,并充分分析,为深基坑支护技术提供数据支持,以确保土体满足岩土工程相关物理学指标,为支护结构设计做保障。同时,需要根据国家开挖指标,对深基坑进行钻探,开挖内部,进而降低造价,从根本上降低勘察工作量。受到土样的复杂性特性影响,土层特性并不能完全凭借土样评估,导致实际情况与结构设计存在不同。

3.3空间效益差异性

深基坑坑内位移具有中间大、两边小的特性,长边深基坑坡度稳定性相对较差,易造成空间问题。以往岩土工程中,传统基坑支护结构是以设计平面应变进行,受多种因素影响,不同形状深基坑工程设计存在巨大差异化,对此,必须以平面设计应变方案做参考,科学、合理调节支护结构,满足开挖空间需求。

3.4支护结构设计不准确

岩土工程安全性与工程质量及深基坑支护结构压力大小存在必然联系,因此,在岩土工程中,我国一直采用朗肯理论与库伦公式计算土质复杂情况。面对复杂的深层坑开挖,易受到内摩擦角、黏聚力、含水率等诸多因素影响,对于支护结构实际受力极难进行估算,导致支护结构设计参数计算与实际受力差异化。有研究指出,内摩擦角相差5°的支护结构,承受的主动土压力有明显差异,开挖后土体凝聚力与原土体凝聚力不同。因此,施工工艺与支护结构的差异会影响土体力学参数。

4施工技术措施

4.1强化施工质量

岩土工程中,加强工程质量监管,做好过程控制是保证深基坑支护施工质量的关键,通过严格的管理控制措施,及时发现施工环节中存在的隐性、显性问题,及时采取应对措施进行纠正补救。对此,首先要加强管理者的监管意识,从管理层加强管理制度,确保施工中严格依照设计方案执行,将管理工作落到实处,提高工程质量。施工前,需要充分做足准备,施工人员需要详细阅览图纸,并熟悉施工流程,依照地质资料、施工环境、图纸等科学、合理规划施工进程,确保岩土工程深基坑支护的顺利完成。岩土工程施工时,需要明确目标、了解任务,摆放好锚杆位置,型号、数量、长度设计合理,适当增加放坡系数、扩张钢筋范围等,保证对工程的审核。坚持深基坑支护、岩土工程开挖分段、分层进行。将设计方案、土方具体开挖方法、开挖顺序等有效结合,依照相关原则,避免出现违规开挖的情况,影响工程质量,从根本上提高深基坑支护工程施工质量。

4.2加强变形观测力度

深基坑支护的主要变形观测包括:基坑边坡变形观测、地下管线变形观测、周边建筑变形观测等。通过具体观测相关数据,对岩土工程支护设计中土方开挖的具体情况进行详细了解。实际施工中土方支护设计的具体情况,可通过偏差分析进行了解,进而及时掌握土方开挖沉降与深坑土体变形影响。施工过程中,需要及时修改设计偏差数据,尽早采取应对措施,确保施工作业的顺利进行。

4.3优化设计理念

我国岩土工程不断发展,深基坑支护技术发展空间巨大,在支护工程设计理念中,需要随着岩土变化与实际支护结构承受力,调整转变规律,促使深基坑支护结构设计进一步完善。受到我国实际情况影响,目前,尚无统一的设计规范,一般根据库伦理论与郎肯理论确定实际土压分布情况,且引用“等值梁法”计算支护桩,避免实际设计与施工方法存在的不足。但受限于郎肯理论影响,实际计算结果存在不同,导致支护设计存在安全性与经济性问题。在当前情形下,需要以生产施工实际情况为基准,制定深基坑支护设计方案,将国内外先进理念引入国内设计理念中,摆脱传统方法的制约,建立现代化信息动态设计体制。

5结语

目前,岩土工程深基坑支护施工技术仍存在诸多不足之处,如支护结构设计不合理、未充分进行深基坑取样、空间效益差异性、支护结构设计不准确等,这些因素都会对岩土工程深基坑支护产生影响。因此,有必要进行强化施工措施,在未来的岩土工程深基坑支护工作中,必须以更高的标准对待,减少施工中的不足之处,提高施工质量。

作者:郎雷亮 单位:山东建勘集团有限公司

岩土工程深基坑支护施工篇2

为满足社会发展需求,岩土工程基坑开挖深度不断增大,对支护施工也有了更为严格的要求,支护施工效果是影响岩土工程施工安全与效率的重要因素。虽然目前有更多新型技术与材料被应用到深基坑支护施工中,并取得了一定的质量效果,但是从整体看还存在部分问题,需要从根本上进行分析,明确施工问题存在的原因,并基于此来选择相应的措施进行优化,争取不断提高深基坑支护效果。

1深基坑支护施工技术分析

建筑工程高度的增加,使得地基的开挖深度也不断增加,为保证其支护施工的安全性,就需要在支护施工时与基坑工程其他相关工程相互协调,从土方开挖、降排水以及机械利用等方面着手,确定支护施工的合理性,提高施工技术的规范性,提高基坑支护施工的安全性、长久性与稳定性。深基坑支护技术常见的有深层搅拌与钢板桩支护、排桩支护与地下连续墙体支护、锚杆与内支撑支护等。第一,深层搅拌与钢板桩支护,主要是利用水泥固化作用,施工前用机械进行充分搅拌,提高材料硬化的速度与效果,对深基坑软土层形成有效支护结构。第二,排桩支护与地下连续墙,主要是将钢筋混凝土管桩视为挡土结构,通过柱列式布置完成对钻孔与挖孔的施工。此种支护技术必须要控制好桩间距路,以工程实际情况为基础,来选择应用密排布置或者疏排布置方式。第三,锚杆与内支撑支护。锚杆与内支撑是深基坑墙体的重要结构,具有刚度大以及变形小等特点,可以有效提高基坑结构稳定性与长久性。

2深基坑支护常见施工问题

2.1设计不合理

在对岩土工程深基坑支护施工进行设计时,需要应用专门的公式对支护结构压力、安全以及工程质量等因素进行综合计算,提高支护施工的适应性。但是就实际情况来看,在用公式计算时,适用范围多为简单结构以及深度较浅的基坑,对于弯角多、含水量大、体量大以及深度深的基坑工程来说计算结果精度低,进而对施工效果产生影响。例如会导致内摩擦角度过大,或者改变静距离,降低支护结构的稳定性与安全性。一般来说细长结构深基坑支护稳定性比极高,对于长宽比较小的岩土工程因为设计不合理,经常会出现坑内位移问题,使得基坑开挖空间过于狭窄,影响支护结构的正常施工。另外,在计算时物理参数选择不当,也会加大对基坑结构与土质特点计算分析的难度,影响工程结构设计的合理性。

2.2取样不完整

在岩土工程深基坑支护施工设计阶段,需要对基坑土样与石方进行取样分析,确保工程设计的合理性。即以岩土工程深基坑支护规范要求为依据,利用钻探取样的方式对深基坑进行全面勘察,在整体上掌握深基坑结构特点。但是在实际施工过程中,很多施工单位为降低造价、缩短工期,在取样阶段随意减少取样数量,缩小取样范围,导致取样分析不彻底,取样分析结构不能代表岩土工程深基坑地质与结构特点,影响施工方案的设计效果,拉大了设计方案与工程实际之间的距离。

3岩土工程深基坑支护施工技术优化措施

3.1优化支护施工设计

为提高岩土工程深基坑支护施工技术落实的有效性,必须要从设计阶段进行优化,选择合适的计算公式,提高计算方法应用的精确性。并且,要在严格遵循国家相关规范基础上,对传统设计理念进行优化,即从工程建设现状出发,选择最为合适的设计方法。施工设计时除了要基于传统理念建立真实信息反馈动态系统外,还应加强对结构变形的控制,做好地面超载情况的计算与确定,并合理转化平面效应与空间效应。另外,设计时还要加强对各影响因素的研究分析,从综合角度出发,提高设计方案的合理性,并在施工过程中不断调节,提高深基坑支护施工效果。

3.2优化基坑开挖施工

对于岩土工程深基坑施工,应采取先支护后开挖的施工方式,在实际施工中要尽量缩短建筑深基坑暴露的时间,提高支护结构施工的后期效果。并且,为提高支护结构施工质量,还应保证整个开挖过程的连续性。另外,深基坑开挖时土方的堆放与运输也是重点管理内容,避免将开挖土方堆放在深基坑周边,按照相关要求开挖土方至少要距离基坑2~3m,应由施工人员来计算安全距离,并控制好土方堆放高度,确保其不会对基坑支护施工造成影响。

3.3优化支护降排水施工

降排水处理是岩土工程深基坑施工的重要环节,尤其是在水下施工的工程,很容易出现流沙与管涌问题,情况严重的甚至会出现护壁土体塌陷的问题,不但会影响正常支护,同时也会增大安全威胁。因此,岩土工程深基坑施工时,要避免在水下施工,积极做好降排水处理,一旦发现地下水超过基坑表面,立即采取措施降水施工,确保基坑底部的干燥性,提高施工环境的安全性,并且可以增强基坑底部的稳定性,提高深基坑土体固结性以及地基结构的抗剪性能。

4结语

深基坑支护施工是岩土工程建设的重要环节,其在施工时受各方面因素比较大,虽然目前有更多新型理念与技术被应用其中,但是还存在一定不足,需要专业技术人员进行更为深入的研究,结合工程施工特点,从多个角度进行研究,争取不断提高设计、施工以及管理等方面的控制效果,争取不断提高工程施工质量。

作者:刘帅

岩土工程深基坑支护施工篇3

1引言

在建筑工程中,为了保证建筑工程的综合质量,必须加强基础工程的建设,确保高水平地完成基础工程,只有深入了解深基坑支护技术,明确深基坑支护施工技术的具体要求,将深基坑支护施工技术应用于建筑工程中,才能够有效建筑工程质量,因此对岩土工程深基坑支护施工技术进行详细探究具有十分重要的现实意义。

2岩土工程深基坑支护施工技术概述

深基坑支护主要是指规模较大的建筑物中支护结构或者深度在5m以上的地下室工程,是为保障地下结构施工、基坑及其周围环境安全所采取的一种技术措施。就支护形式而言,通常可分为钢板柱、排桩、搅拌桩、土钉墙、地下连续墙、柱列式灌注桩等多种支护工艺,且各有特点,适用条件有所不同。在建筑工程中,深基坑支护技术不仅仅是一种科学有效的地基处理技术和工艺,而且还能够为建筑基础承载力和强度提供有力支持,有利于有效改善整体基础施工的可靠性和有效性,进而保障基础工程整体质量。深基坑支护是一个包括基坑开挖、支护、防水和环境保护于一体的复杂系统,其成败与工程质量、工期和造价息息相关,而且会对周围的构筑物和生态环境有所影响,这就要求在建筑工程中应用深基坑支护技术时,注意结合实际情况选择最优的支护工艺,同时加强技术管理和质量控制,以此最大限度发挥其技术优势。

3岩土工程深基坑支护施工要求

3.1深基坑支护的设计要求

在建筑工程施工结构体系中,深基坑支护设计至关重要,在保证深基坑支护具有稳定性与变形性方面发挥着十分重要的作用。深基坑结构出现的滑动、倾倒破坏以及四周环境的损坏都属于深基坑支护技术的承载能力极限状态。而在正常使用极限状态主要表现在深基坑开挖过程中,对周边土体产生支护结构变形或者很大变形的影响。而没有针对深基坑结构的稳定状态进行极限状态的分类。因此,深基坑支护技术在建筑工程不断应用过程中,一定要保障其深基坑支护的承载力的安全系数,这样才能有效提升建筑工程支护的稳定性。还需要注意的是,在保障建筑工程的支护的稳定性前,一定要注意在深基坑支护设计计算时,严格控制位移量,这样才能够有效预防深基坑工程对周边建筑物的影响。除此以外,在对支护结构的变形进行计算时,一定要考虑对周边环境影响,要控制好支护结构变形,从而保障支护结构的水平位移,所以要随时监控水平位移状态。

3.2深基坑支护的技术要求

深基坑支护技术在建筑工程施工过程中,一定要注意要依据建筑工程的地质条件、深基坑的边缘距以及占地面积等方面在结构设计上进行合理设计,只有在建筑施工合理利用深基坑支护技术就可以保证建筑工程安全。深基坑支护技术还具有防水性,从而预防建筑工程出现渗漏问题,这样就可以保证建筑工程的稳定性。

4岩土工程深基坑支护施工技术分析

4.1混凝土灌注桩支护施工技术

混凝土灌注桩的详细流程包括:对钻孔的场地进行平整操作、测量放线布孔、挖出排水沟并且布置出泥浆池、使桩机就位、准备好泥浆、用钻机进行钻孔操作、洗孔清孔、布置钢筋笼、浇筑灌注桩水下混凝土。混凝土灌注桩在质量检验上比起其他桩种较为严格,所以在现场施工时,不仅要将施工措施事先规划好落实好,还要对该工艺流程的各环节进行严格把关,严格执行,这样才能确保工程施工过程的顺利进行,并且可以提高工程支护的质量,达到建筑工程预期的目标要求。就混凝土灌注桩施工来看,该施工过程需要做好各种辅助的施工措施,包括测量放线布孔以及对场地进行必要的平整处理、机桩准确定位、泵的提升速度控制等等,这样才能提高混凝土灌注桩的施工质量,使基坑支护达到预期的目标。

4.2锚杆支护施工技术

锚杆支护指的是在边坡、岩土深基坑等地表工程及隧道、采场等地下洞室施工中采用的一种加固支护方式。即用金属件、木件、聚合物件或其他材料制成杆柱,打入地表岩体或洞室周围岩体预先钻好的孔中,利用其头部、杆体的特殊构造、尾部托板,或依赖于黏结作用将围岩与稳定岩体结合在一起而产生的悬吊效果、组合梁效果、补强效果,以达到支护的目的。这种支护形式可以增加支撑体所承受的拉力,增加了其稳定性,使其不易变形。同时该支护形式还可以节约能源以及人力资源,并且具有高效的特点。根据实践证明,采用这种方法,在深基坑支护期间,周围建筑物无明显变形现象,且坑壁稳定性很好,没有出现坍塌的现象。综上所述,混凝土灌注桩支护和锚杆支护施工方案的可行性比较高,不仅可以保证施工过程的顺利进行,而且还能使周围的建筑物构筑物受到的影响很小或不受影响锚杆的构造见图1所示。

4.3组合型支护施工技术

土地环境条件有很大差别的深基坑内部,就应当根据当时的环境条件使用组合型支护的方法,使得各种支护结构类型充分发挥其优越性。支护类型主要是:组合钢筋混凝土的H型钢和灌注桩与水泥土墙;组合预应力锚索和土钉墙;组合水泥土搅拌桩和土钉墙;组合微型注浆桩和土钉墙;组合桩间高压旋喷桩和钢筋混凝土排桩;组合各种支护结构由高压旋喷桩和水泥土搅拌桩造成的封闭止水帷幕。这些组合型支护结构中,深基坑支护近些年最主要的形式是土钉墙和排桩的支护结构。

4.4自立式支护施工技术

水泥搅拌桩挡墙支护和悬臂式排桩支护是自立式支护的主要形式。水泥搅拌桩挡墙支护其优势在于即使深基坑内没有支撑,也能够使得地下工程和机械挖土正常施工。但是,这种支护方式挡墙面积太大,在施工过程中土层的有机质含量和含水量会影响支护强度。悬臂式排桩是利用人工冲、钻孔或者挖孔灌注桩,其应用优势在于即使深基坑内没有支撑,也能够使得地下工程和机械挖土正常施工。但是,如果地质条件差或者坑基深,则会使支护桩顶部的水平位移加大,增加工程的成本和造价。所以这种方式通常运用在坑基小于等于6m,并且地质条件好的施工场地。自立式支护施工技术的应用优势在于高整体性、高稳定性、大厚度的坑基挡墙、高效率,并且深坑基的隔水效果很好,造价也不高。

5深基坑支护施工技术在实际工程项目中的应用分析

5.1工程项目概况

某工程项目拟建一栋26层办公楼及地下车库,建筑高度为88.4m。基坑开挖坑底的最大标高为-6.9m,±0.000与高程24.6000m相当。施工场地基本平整,基坑周长为362m,基坑面积为12980m2。

5.2支护施工技术要点

该工程的土方开挖深度为6.9m,属于大规模深基坑施工工程,具有一定的危险性。所以基坑支护施工需要与土方开挖施工进行良好的协调及配合,确保工程的施工的效率与质量。清理施工现场,确保整洁无杂物后,对土钉锚喷支护进行部分分层开挖支护操作。完成支护桩施工后,需等待其强度达到百分之百后,才能够进行支护结构施工操作,包括土钉喷锚施工、土方开挖等,以便加快施工进度,提升效率。

6结语

综上所述,在岩土工程施工中,深基坑支护至关重要,因此必须不断创新创新和改进深基坑支护技术。在岩土工程施工中,首先需要明确岩土工程深基坑支护施工要求,然后结合工程实际需要,选用岩土工程深基坑支护技术,包括混凝土灌注桩支护施工技术、锚杆支护施工技术、组合型支护施工技术以及自立式支护施工技术,这样才能有效避免岩土工程施工中出现深基坑支护问题,保证工程的顺利进行。

参考文献

[1]严元.论岩土工程深基坑支护施工技术措施[J].城市建筑,2012(11X):56.

[2]任艳秋.论岩土工程深基坑支护施工技术措施[J].黑龙江科学,2014(03):52.

[3]章鸿锋.论岩土工程深基坑支护施工技术措施[J].中国科技博览,2013(29):131.

作者:张建磊 单位:贵州正业工程技术投资有限公司