首页 期刊 系统工程与电子技术 事件影响下的时间序列多尺度集成预测 【正文】

事件影响下的时间序列多尺度集成预测

作者:蒋铁军; 张怀强; 周成杰 海军工程大学管理工程与装备经济系; 湖北武汉430033
时间序列   事件影响   经验模态分解   多尺度分析   结构性变点  

摘要:针对时间序列的非线性、非平稳和多尺度特征,考虑到事件对序列结构产生的影响,提出事件影响下的时间序列多尺度集成预测策略。首先,基于经验模态分解将原始序列分解成若干分量,从多个尺度展现序列的基本构成;随后,基于迭代累积平方和实现分量序列的变点检验,从多个尺度判别和获取事件对序列产生的结构性影响;然后,基于干预分析构建事件对不同分量序列的影响模型,据此剔除事件影响,获取净化序列;最后,运用基于粒子群优化的支持向量回归,建立单一尺度的序列预测模型,进而实现事件影响下的时间序列多尺度集成预测。实证分析表明:该策略能够精细辨识事件对序列的多尺度影响,有效建立序列总体及分量的预测模型,与传统方法相比,具有更强的事件辨识能力、自适应建模能力和更高的预测精度。

注:因版权方要求,不能公开全文,如需全文,请咨询杂志社

学术咨询 免费咨询 杂志订阅