首页 优秀范文 继电保护技术论文

继电保护技术论文赏析八篇

时间:2023-02-19 04:49:33

继电保护技术论文

继电保护技术论文第1篇

1.1继电保护自动化技术在电力系统中的应用

①继电保护自动化技术在母线保护中的应用。母线继电保护主要包括两种,即相位对比保护以及差动保护。相位对比保护指的是通过相位的对比方式,提高系统保护母线的可靠性和有效性;差动保护是将特点以及变化都一致的电流互感器设置在母线元件上,当系统母线侧边端子和二次绕组进行连接之后,再将继电保护装置安装在系统母线差动位置。在大电流接地过程中,通过三相连接的方式实现;小电流接地过程中,在相间短路中设置系统母线保护,然后通过两相连接的方式实现。②继电保护自动化技术在发动机保护中的应用。发电机是电力系统的重要组成部分,保证发动机的安全、稳定运行至关重要。继电保护自动化技术在发电机保护中应用主要包括两个方面:一方面,重点保护,如果发电机定子绕组匝间发生短路故障,将会导致发电机的故障部位温度上升,破坏绝缘层,威胁发电机的安全运行,通过在定子绕组内安装匝间保护装置,能够有效的防止定子匝间短路故障的发生;如果发电机的单相接地产生的电流超过规定值,通过安装接地保护装置能够对发电机进行继电保护;通过将发电机中性点、电流、相位进行相互结合,能够形成纵联差动保护,实现对发电机的保护;另一方面,备用保护,过电压保护能够有效的防止发电机自负荷较低的状况下发生绝缘被击穿的现象;过电保护能够有效的实现对外部短路故障的保护,防止发生短路破坏发电机;当发电机定子绕组发生低负荷问题时,继电保护装置能够自动切断电源,并发出相应的报警信号,实现对发电机的保护。③继电保护自动化技术在变压器保护中的应用。变压器是电力系统的重要组成部分之一,对电力系统的运行安全性和稳定性具有非常重要的作用。继电保护自动化技术在变压器保护中的应用主要包括以下几个方面:其一,短路保护,变压器短路保护包括阻抗继电保护和过电流继电保护,阻抗继电保护主要是通过利用变压器阻抗元件产生的保护作用,阻抗元件运行一段时间之后,会自动切断电源,以此实现对变压器的保护;过电流继电保护主要是在变压器电源两边电源和时间元件中安装过电流继电保护装置,电流元件运行一段时间之后,会自动切断电源,进而实现对变压器的保护。其二,瓦斯保护,当变压器的油箱出现问题时,在故障电弧的作用下绝缘材料和油都会发生分解,产生有害气体,通过采用瓦斯保护,当油箱出现上述故障时,能够自动的启动保护动作,将变压器电源切断,同时发出警报信号通知维护人员赶到故障地点进行处理。其三,接地保护,对于不接地变压器保护,应该采取零序电压保护措施;对于直接接地变压器保护,应该采取零序电流保护。④继电保护自动化技术在线路接地保护中的应用。电力系统的线路错综复杂,接地方式也相对较多,因此电力系统的接地方式包括大电流型接地与小电流型接地,当出现大电流接地时,应该立刻切断电源,防止接地故障对电力系统造成的破坏;当发生小电流型接地时,继电保护装置会发出报警信号,电力系统在一定时间内依然可以运行。针对不同的接地故障,应该根据故障状况采取相应的保护措施,具体状况如下所示:其一,零序功率,当电力系统发生接地故障时,零序功率的方向发生变化,零序电流波动相对较小,以此实现对电力接地故障的预测以及保护;其二,零序电流,当电力系统线路发生接地故障时,零序电流会迅速上升,继电保护动作非常敏感,能够及时的采取切断电源的保护措施,对电力系统进行保护;其三,零序电压,电力系统在正常运行时,并不会产生零序电压,如果电力系统发生接地故障,会导致零序电压的产生,继电保护装置能够及时的发出相应的报警信号,同时电网维护人员通过观察电压表数值能够判断系统是否发生接地故障,主要是因为当电力系统发生接地故障时,电压数值会降低。

1.2实例分析

文章以某电网为例,该电网于2010年应用了继电保护自动化技术,2011年4月23日,110kV变压器主变低压侧继电保护动作,1号主变101开关跳闸,2号主变119、131开关过流保护动作跳闸,重合闸动作,合成功,电网维护人员赶到事故现场,设备并无异常,维护人员通过查看跳闸过的线路,两条线路故障都能够合闸成功,但是却导致越级跳闸。通过对故障进行分析,发现为线路故障,开关拒动,处理方法表现为:把故障开关隔离,恢复供电,然后通知检修人员认真检查,查实状况后采取措施进行检修。

2继电保护自动化技术的未来发展趋势

继电保护自动化技术的未来发展趋势主要包括以下几个方面:其一,智能化,近年来,人工智能技术在电力系统继电保护自动化中得到非常广泛的应用,例如模糊逻辑算法、遗传算法、神经网络等,通过将这些人工智能技术应用在继电保护自动化系统中,能够保证继电保护自动化系统正确判别故障,并具有智能化解决复杂问题的能力,进而实现继电保护的智能化;其二,网络化,计算机网络技术在国家经济建设以及能源发展中发挥了至关重要的作用,通过将网络化技术应用在电力继电保护系统中,利用计算机网络能够将主要设备的继电保护装置连接在一起,创建继电保护装置网络,能够显著的提高继电保护的可靠性,因此电力系统继电保护技术的网络化是未来发展的一种必然趋势;其三,计算机化,随着计算机技术的快速发展,自动化芯片控制的电路保护硬件已经从16位单CPU结构发展为32位CPU微机保护结构,显著的提高了继电保护的性能以及响应速度,继电保护自动化系统的计算机化已经成为不可逆转的发展趋势。

3结束语

继电保护技术论文第2篇

论文摘要:继电保护技术向 计算 机化、 网络 化、智能化、保护、控制、测量和数据通信—体化方向 发展 。并且电力作为当今社会的主要能源,对国民 经济 的发展和人民生活水平的提高起着极其重要的作用,本文对继电保护发展现状、电力系统中继电保护的配置与应用、继电保护装置的维护作了详细的介绍。

电力作为当今社会的主要能源,对国民经济的发展和人民生活水平的提高起着极其重要的作用。 现代 电力系统是—个由电能产生、输送、分配和用电环节组成的大系统。电力系统的飞速发展对电力系统的继电保护不断提出新的要求,近年来, 电子 技术及计算机通信技术的飞速发展为继电保护技术的发展注入了新的活力。如何正确应用继电保护技术来遏制电气故障,提高电力系统的运行效率及运行质量已成为迫切需要解决的技术问题。

1、继电保护发展现状

电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的飞速发展又为继电保护技术的发展不断地注入了新的活力,因此,继电保护技术得天独厚,在40余年的时间里完成了发展的4个 历史 阶段。

建国后,我国继电保护学科、继电保护设计、继电器制造 工业 和继电保护技术队伍从无到有。在大约10年的时间里走过了先进国家半个世纪走过的道路。上世纪50年代,我国工程技术人员创造性地吸收、消化、掌握了国外先进的继电保护设备性能和运行技术,建成了一支具有深厚继电保护理论造诣和丰富运行经验的继电保护技术队伍。对全国继电保护技术队伍的建立和成长起了指导作用。阿城继电器厂引进消化了当时国外先进的继电器制造技术,建立了我国自己的继电器制造业。因而在60年代中我国己建成了继电保护研究、设计、制造、运行和教学的完整体系。这是机电式继电保护繁荣的时代,为我国继电保护技术 的发展奠定了坚实基础。

2、电力系统中继电保护的配置与应用

2.1继电保护装置的任务

继电保护主要利用电力系统中原件发生短路或异常情况时电气量(电流、电压、功率等)的变化来构成继电保护动作。继电保护装置的任务在于:在供电系统运行正常时,安全地。完整地监视各种设备的运行状况,为值班人员提供可靠的运行依据;供电系统发生故障时,自动地、迅速地、并有选择地切除故障部分,保证非故障部分继续运行;当供电系统中出现异常运行工作状况时,它应能及时准确地发出信号或警报,通知值班人员尽快做出处理。

2.2继电保护装置的基本要求

1)选择性:当供电系统中发生故障时,继电保护除。首先断开距离故障点最近的断路器,以保证系统中其它非故障部分能继续正常运行。

2)灵敏性:保护装置灵敏与否一般用灵敏系数来衡量。在继电保护装置的保护范围内,不管短路点的位置如何、不论短路的性质怎样,保护装置均不应产生拒绝动作;但在保护区外发生故障时,又不应该产生错误动作。

3)速动性:是指保护装置应尽可能快地切除短路故障。缩短切除故障的时间以减轻短路电流对电气设备的损坏程度,加快系统电压的恢复,从而为电气设备的自启动创造了有利条件,同时还提高了发电机并列运行的稳定眭。

4)可靠性:保护装置如能满足可靠性的要求,反而会成为扩大事故或直接造成故障的根源。为确保保护装置动作的可靠性,必须确保保护装置的设计原理、整定训算、安装调试正确无误;同时要求组成保护装置的各元件的质量可靠、运行维护得当、系统简化有效,以提高保护的可靠性。

2.3保护装置的应用

继电保护装置广泛应用于工厂 企业 高压供电系统、变电站等,用于高压供电系统线路保护、主变保护、电容器保护等。高压供电系统分母线继电保护装置的应用,对于不并列运行的分段母线装设电流速断保护,但仅在断路器合闸的瞬间投入,合闸后自动解除。另外,还应装设过电流保护,对于负荷等级较低的配电所则可不装设保护。变电站继电保护装置的应用包括:

①线路保护:一般采用二段式或三段式电流保护,其中一段为电流速断保护,二段为限时电流速断保护,三段为过电流保护。

②母联保护:需同时装设限时电流速断保护和过电流保护。

③主变保护:主变保护包括主保护和后备保护,主保护一般为重瓦斯保护、差动保护,后备保护为复合电压过流保护、过负荷保护。

④电容器保护:对电容器的保护包括过流保护、零序电压保护、过压保护及失压保护。

随着继电保护技术的飞速 发展 ,微机保护的装置逐渐投入使用,由于生产厂家的不同、开发时间的先后,微机保护呈现丰富多彩、各显神通的局面,但基本原理及要达到的目的基本一致。

3、继电保护装置的维护

值班人员定时对继电保护装置巡视和检查,并做好各仪表的运行记录。在继电保护运行过程中,发现异常现象时,应加强监视并向主管部门报告。建立岗位责任制,做到每个盘柜有值班人员负责。做到人人有岗、每岗有人。值班人员对保护装置的操作,一般只允许接通或断开压板,切换开关及卸装熔丝等工作,工作过程中应严格遵守电业安全工作规定。

做好继电保护装置的清扫工作。清扫工作必须由两人进行,防止误碰运行设备,注意与带电设备保持安全距离,避免人身触电和造成二次回路短路、接地事故。对微机保护的电流、电压采样值每周记录一次,每月对微机保护的打印机进行定期检查并打印。定期对继电保护装置检修及没备查评:

①检查二次设备各元件标志、名称是否齐全;

②检查转换开关、各种按钮、动作是否灵活无卡涉,动作灵活。接点接触有无足够压力和烧伤;

③检查控制室光字牌、红绿指示灯泡是否完好;

④检查各盘柜上表计、继电器及接线端子螺钉有无松动;

⑤检查电压互感器、电流互感器二次引线端子是否完好;

⑥配线是否整齐,固定卡子有无脱落;

⑦检查断路器的操作机构动作是否正常。

根据每年对继电保护装置的定期查评,按情节将设备分为三类:经过运行检验,技术状况良好无缺陷,能保证安全、 经济 运行的设备为一类设备;设备基本完好、个别零件虽有一般缺陷,但尚能安全运行,不危及人身、设备安全为二类设备。有重大缺陷的设备,危及安全运行,出力降低,“三漏”情况严重的设备为三类。如发现继电保护有缺陷必须及时处理,严禁其存在隐患运行。对有缺陷经处理好的继电保护装置建立设备缺陷台帐,有利于今后对其检修工作。

随着电力系统的告诉发展和 计算 机通信技术的进步,继电保护技术的发展向计算机化、 网络 化、—体化、智能化方向发展,这对继电保护工作者提出了新的挑战。只有对继电保护装置进行定期检查和维护,按时巡检其运行状况,及时发现故障并做好处理,保证系统无故障设备正常运行,提高供电可靠性。

参考 文献 :

继电保护技术论文第3篇

【关键词】电力系统;继电保护自动化技术;应用

1 前言

近年来,随着经济的快速发展,人们对电能的需求越来越高,并且电力资源已经成为人类社会生产与生活中必不可少的一部分。继电保护对保证电力系统的正常运行具有十分重要的作用,并且随着科学技术的快速发展,我国的继电保护技术也在不断的发展,特别是继电保护自动化技术的应用,更加速进了我国电力系统的发展。目前,继电保护自动化技术已经成为电力系统的热点研究话题,经过人们潜心研究,继电保护自动化技术将会在电力系统中发挥更重要的作用,进而为人们的生产和生活提供可靠性、稳定性更高的电力资源。

2 继电保护自动化的概述

电力系统作为一个综合、全面工作的网络系统,需要专门的技术人员以及保护装置保证其能够安全的工作,继电保护最基本的职能就是在电力系统运行不稳定,或者是出现一些故障后实施有效的保护措施,尽可能的降低造成的损失,防止电力系统的故障进一步恶化。继电保护自动化技术在实施保护措施时,主要表现在以下两个方面:其一,当电力系统在运行的过程中发生故障,继电保护装置会迅速的发出故障信号,提醒工作人员及时、准确的赶到故障地点进行维修;其二,电力系统在运行中发生故障时,继电保护装置会迅速的做出保护动作,将出现故障的设备或者零件与电力系统隔离开,这样能够防止故障设备或者零件对整个电力系统造成损害,避免故障进一步扩散,尽可能的降低故障造成的影响。当发生的故障非常严重时,工作人员应该停止整个电力系统,进行全面的检查,及时的更换存在安全隐患的零件或者设备,这样能够有效的防止电力系统出现大的安全事故。

3 继电保护自动化技术在电力系统中的应用

(1)继电保护自动化技术在电网中的应用。输变电电网是现代电力系统的重要组成部分,电网的安全直接影响电力系统的稳定性。继电保护自动化技术在电网中的应用,能够有效的遏制电气故障,保证电网能够安全、稳定的运行。继电保护自动化技术在电网中的应用,首先应该明确电网对继电保护装置的基本要求,然后以可靠性、灵敏性、速动性、选择性为选择继电保护装置的基础条件,为继电自动化保护技术在电网中的应用奠定良好的基础。此外,继电保护自动化技术在电网应用的过程中,还应该根据电网所在地的气候条件、地理位置以及电磁干扰等因素进行全面的分析和考虑,以此保证继电保护自动化技术在应用的过程中能够发挥最大的作用。同时,继电保护自动化技术在电网中的应用还应该对设备自身的激励线圈参数、机械作用等进行合理的分析与计算,以科学的论证为基础,进而保证机电保护装置能够实现良好的性能。

(2)继电保护自动化技术在电厂设备中的应用。机电保护自动化技术在电力系统中的应用,电厂设备的继电保护是应用的关键。随着电力需求的不断增加,电力系统不断的采用大容量的发电机组,大容量发电机组不但价格昂贵,并且当设备发生故障时,维修也相对困难,并且一旦发生故障将会造成严重的安全隐患和巨大的经济损失。因此,为了降低发电机组发生故障的概率,将继电保护自动化技术应用在发电机组以及相关的辅助记住中,使设备在被保护系统元件发生故障时能够以继电保护装置开速脱离故障元件,将故障元件和电场设备的其他元件隔离,通过这种方式减少故障对系统元件的损害,进一步控制故障的扩散,降低对电场设备的损害。此外,继电保护自动化技术在电厂设备中的应用,还能够及时、准确的反应设备的运行状态,当检测出设备存在异常状况时,将会发出信号,通知工作人员赶到事故现场进行处理,避免设备故障的发生。

(3)继电保护自动化技术在变压器中的应用。变压器是电力系统中的重要组成部分,继电保护自动化技术在变压器中的应用,能够保证变压器的安全,减少故障的损害,以此保证电力系统供电的稳定性。继电保护自动化技术在变压器中的应用,主要以电压等级、变压器的容量等作为选择和安全设备的依据,通过充分的论证、分析和考虑,使机电保护装置的选择更加符合变压器保护的需求。因此,机电保护自动化技术在变压器中的应用,应该从设备选型入手,重点选择适合的继电保护装置型号,针对差动保护进行相应的计算,在综合分析以及论证中,保证设备选型能够满足变压器的实际需求。此外,在变压器安装继电保护装置时应该注意安装质量,严格的按照相关的安装重点进行安装,保证机电保护装置能够发挥最大的作用,实现保护变压器的目标。

(4)继电保护自动化技术在母线中的应用。继电保护自动化技术在母线中的应用,主要分为相位对比保护和差动保护两种。相位对比保护主要是通过相位的对比方式,提高系统母线保护的有效性;差动保护主要是特点和变化都一致电流互感器设置在系统母线元件上,当系统母线侧边端子和二次绕组连接后,再将继电保护器装置安装在系统母线差动位置上。在电流接地故障中,系统母线保护通过三相连接的方式实现继电保护;在小电流接地故障中,系统母线继电保护设置在相间短路中,通过两相连接的方式实现继电保护。

4 继电保护自动化技术在电力系统中应用的实例

文章以某电网为例,进一步探析继电保护自动化技术在电力系统中的应用。该电网在2012年应用了继电保护自动化技术,在使用继电保护自动化技术之前,由于元器件、线路老化,电磁的干扰,设备制造质量水平等问题,该电网设备的年平均故障次数为158.6次/年,通过应用了继电保护自动化技术后,电网设备的年平均故障次数为33.6次/年,通过实践证明,将继电保护自动化技术应用在电力系统中,能够强化对电力系统的检查和日常维护,并且当发生故障后还能及时的发出警报,工作人员及时的赶到故障现场将故障排除,尽可能的降低故障造成的损失。

5 结束语

总而言之,继电保护自动化技术在保证电力系统的安全中发挥着至关重要的作用,通过继电保护设备的运行,能够及时、准确的发现电力系统中存在的故障,及时的发出报警信号,或者自动处理,尽可能的降低故障对电力系统造成的损坏,进而把这哈你歌电力系统能够安全、稳定的运行,对电力系统的发展具有十分重要的意义。

参考文献:

[1]刘小凡.电力系统继电保护自动化研究[J].科技创新与应用,2013 (32).

[2]高新丽,赵辉.继电保护自动化技术的应用研究[J].电子世界,2013 (4).

继电保护技术论文第4篇

关键词 电力系统;继电保护;事故诱因;处理方法

中图分类号TM6 文献标识码A 文章编号 1674-6708(2013)95-0169-02

电力系统是一个国家工业、民生的重要支柱行业,日常生活的方方面面都离不开电力系统的支持。为了满足日益增加的电力消耗的需求,大功率、高压传输的高电、强电系统得到了迅猛的发展。与此同时,电力安全问题也是一个不容忽视的问题所在。当前的电网系统中,电力安全主要依赖的是继电保护装置,通过切断电力传输路线或者发送电力运行异常信号,继电保护装置可以在在电力系统超载运行或者出现运行故障时,在极短的时间内对电网系统进行保护,避免进一步的电网损伤。因此,继电保护装置是控制电网运行阈值能力的一个安全阀门,是电网系统自保的最后一道防线。同时正是由于继电保护装置具有以上的这些特点,对继电保护装置在事故反应能力和故障处理能力上也提出了相当严苛的要求,总而言之,继电保护装置的运行稳定性决定了继电保护装置的实际性能。因此,我们有必要针对继电保护装置在实际运行中常见的事故现象进行针对性的分析。

1 继电保护装置常见事故

继电保护装置是电网系统中的安全保护装置,是在超负荷、极端运行工况下的系统自保装置,正是由于继电保护装置经常处于恶劣的工作环境之下,因此,继电保护装置的事故触发率也是相当的高,常见的继电保护装置的事故类型有以下几种。

1.1继电保护装置参数偏差事故

继电保护装置长期暴露在电力传输线路之中,由于电力元件的疲劳老化和外界的腐蚀效应导致继电保护装置的相关的技术参数发生较大的偏差,而在日常维修保养中,对继电保护装置的参数整定工作是日常工作流程之一,往往由于整定方法不当或者是数据采集失真,导致继电保护装置的参数发生重大偏差,直接引起继电保护装置在非既定状态下出现事故。

1.2继电保护装置抗干扰失效事故

由于继电保护装置是电网系统应对突发极端工况的应急装置,因此,对于继电保护装置的触发前提应该有一个清楚的定义,这是由于在实际运行中,高强度、高频率的非电信号的冲击也极易触发继电保护器,使得电网传输断开。尤其是对于一些敏感性较强的电力装置如微机系统来说,信号转化的误差会转变为瞬态脉冲信号,直接启动继电保护装置,引发跳闸。

1.3继电保护装置绝缘失效事故

由于电力系统中线路布局十分复杂,集成化高,强弱电交叉布置,信号之间极其容易发生干扰。因此,在这些布局密集的地方,静电效应十分严重,设备表面将吸附大量的粉尘,长此以往,线路焊点上将直接覆盖一层静电粉尘,电器元件之间直接形成同路,继电保护装置将失去原有功效,设备短路、起火现象的发生机率大大增加,这是绝缘件失效导致的重大电力安全事故。

2 继电保护装置事故触发诱因

从继电保护装置事故的类型上可以总结得出,影响继电保护装置运行稳定性的主要诱因主要分为:继电保护系统硬件故障、继电保护系统软件故障和电网工作人员操作失误三种情况。

2.1继电保护系统硬件故障

继电保护装置的硬件组成十分复杂,主要的功能模块包括电源供给模块、数据处理模块、数模转换模块和断电器等等,各硬件的功能参数多,技术要求也较高,一旦在日常运行中由于运行环境的侵蚀导致硬件参数发生巨变,就会直接引起电器元件的绝缘老化、二次回路等问题,由于继电保护装置还需要处理大量的实时数据,因此,数据通道故障也会引起继电失效,断路器的运行稳定性也是继电保护装置运行失稳的一个重要硬件原因。

2.2继电保护系统软件故障

在软件方面的故障诱发类型主要有:由于软件系统开发时功能定义不明确,导致软件存在明显的漏洞,影响实际运行;由于软件系统的逻辑处理流程存在错误,导致在特殊工况下软件运行报错,直接停运;由于软件操作失误或者软件运行系统崩溃导致软件功能畸变,导致事故出现,其他的故障类型主要是软件数据处理功能混淆。

2.3电网工作人员操作失误

由于电网工作人员操作失误导致继电保护装置事故发生的主要形式有两种:1)继电保护装置安装不当、维修保养不规范,错误的电路搭接和不精确的电路维修保养,导致继电保护装置技术参数偏离实际要求,将在毫无知觉的情况下诱发事故。2)继电保护装置运行管理失误,在日常的电力安全管理中,错过电器装置的常规运行检查程序,导致电器元件受损,这也是事故高发的主要原因。

3 继电保护装置事故处理措施

针对继电保护装置常见的事故类型和触发诱因,我们提出了相应的事故处理方案,为减少事故发生提供技术参考。

3.1严格把控装置监测检修环节

鉴于继电保护装置事故高发性的特征,必须制定有针对性的装置的监测检修方案。对于电网线路中使用的继电保护装置,装设状态监测装置,实时监测各项技术参数的变化情况,设置紧急情况的危险报警机制。同时,制定有计划的检修方案,针对使用年限,装置类型和使用线路的不同情况分别进行定时检修维护,最大限度的降低故障发生率。

3.2对电网管理人员进行专业化的技能培训

继电保护装置技术性能较为复杂,电网管理人员在不清楚装置详细技术指标的前提下,很难对继电保护装置进行合理的管理工作,因此,针对继电保护装置的技术特性,进行专业化的装置技术特性培训,了解继电保护装置的运行机理,掌握常见的事故特征,并且熟悉相应的突发事故的处理方式,这样才能应对突况,以备万全。

3.3建立事故处理系统

针对继电保护装置常见的事故发生环节所在,有针对性的进行事故监测,利用信息化的技术手段,建立基于电网继电保护装置运行事故故障的信息化管理系统平台,平台功能包括:继电保护装置运行实况监测、关键元件技术参数监测、常规检修计划表、突况处理方案和危险排除机制等等,利用一体化的管理方式,全方位的保障继电保护装置的安全运行。

4结论

本文对电网安全系统中的继电保护装置进行了详细分析,通过剖析继电保护装置的运行机理,总结了继电保护装置常见的事故发生类型,并针对性的分析了相应的事故诱因,同时,从电网实际运行的情况出发,提出了相应的继电保护装置事故处理方案,为电网运营单位提供了有价值的技术参考。

参考文献

[1]罗菲.浅论电力系统继电保护事故处理方法[J].实践思考,2011(8).

继电保护技术论文第5篇

关键词:继电保护;电力系统;综合自动化技术

中图分类号:TM774

文献标识码:A

文章编号:1009-2374(2012)18

继电保护是指电力系统发生故障,危害到系统安全运行的异常情况,并对事故处理策略进行研究的自动化措施。继电保护中主要使用带触点的继电器对电力系统、电机、变压器以及输变线等进行保护,以保证电力系统免受损害。继电保护的基本任务是:当电力系统发生故障或者系统运行的工况不正常时,在尽可能短的时间和最小区域范畴内,自动将故障设备从电力系统中剥离出来,或者发出报警指示信号提示值班人员及时找到异常工况发生的根源并及时排除故障设备,使系统恢复正常,以减轻对电力系统设备的损害,避免对电网稳定运行造成影响。因此,研究电力系统的继电保护技术对保障电力系统的安全稳定运行有着十分重要的现实

意义。

1 继电保护技术的发展

我国继电保护技术的发展大致可以分成四个

阶段:

第一阶段。20世纪50年代,我国工程技术人员通过学习国外先进的继电保护设备和技术,将这些设备的性能和技术进行消化和吸收,建立了一支继电保护队伍,这个队伍对继电保护理论有着深刻的理解,并且有着丰富的经验,创建了我国自主的继电器制造业,这一时代的继电保护主要是机电式

为主。

第二阶段。这一阶段从20世纪50年代末开始,它的标志是开始研究晶体管继电保护,使继电保护开始国产化的道路。

第三阶段。20世纪70年代中期开始,继电保护领域研究基于集成运算放大器的集成保护,并且开始取代晶体管保护。我国自主研制的集成电路采用高频保护方式进行相电压补偿,并且运用在多条输电线路上。

第四阶段。这一阶段从20世纪90年代开始持续到现在,以微机继电保护为主,出现了多种机型的微机保护线路和设备,微机继电保护具有自检查功能、逻辑处理能力强大、存储记忆和数值计算能力,数字信号通信能力较强。

2 继电保护技术的前景分析

随着计算机技术的快速发展,计算机在电力系统继电保护领域中得到了广泛地应用,新的现代控制原理被广泛应用到微机继电保护中来,从而将微机继电保护的发展推向了更高的层面。目前,主要向计算机化、网络化、智能化以及一体化等趋势

发展。

2.1 计算机化

继电保护系统的不断发展,要求系统除了基本的保护功能以外,由于现在系统的数据量急剧增多,这就需要具有强的数据处理能力,大容量的存储空间以保存大量的故障信息,为了及时传输信息必须具有强大的通信能力,以及与其他系统融合联网的功能,使整个系统的数据和信息实现资源共享。随着计算机技术的进步,计算机的存储、数据处理和通信能力都得到了不同层次的提高,这些都是继电保护计算机化的技术保障。

2.2 网络化

系统的数据和信息要实现资源共享就离不开继电保护的网络化,计算机网络和继电保护相互结合可以有效保证数据和信息的共享,从而使电力系统安全、稳定运行。随着对电力系统要求的不断提高,要求每个保护装置的故障信息和数据都能够实现全系统共享,保护装置根据整个系统的故障信息来决定保护装置下一步的动作,从而保护系统的安全。要想实现上述功能,就必须对整个系统主要电气设备的保护装置实现网络化管理,即实现微机保护装置的网络化。当前一些线路已经开始试行网络化,但只是起步阶段,有大量的工作需要继续

努力。

2.3 智能化

为了使继电保护达到更高的水准,人们将自适应理论、专家控制、人工神经网络、支持向量机、模糊逻辑和蚁群算法等智能算法广泛应用到系统中。如输电线两侧系统电势角度摆开发生渡电阻的短路故障情况就是一个非线性问题,采用传统的距离保护很难判断出故障的位置,如果使用人工神经网络方法,将大量故障数据作为训练的样本,只要选择的样本充分考虑到各种故障情况,就可以实现对任何故障的准确判断。只要将各种智能算法有机地结合在一起,就可以将各种不确定因素对继电保护系统的影响降到最少,提高了保护装置的可

靠性。

2.4 一体化

继电保护装置不仅要实现故障的继电保护,在正常运行状态是可以完成测量、控制和数据通信等功能,从而实现保护、控制和数据通信一体化。

3 综合自动化技术

综合自动化技术相对于常规变电站二次系统,有以下特点:

3.1 设备、操作、监视屏幕化、图形化

综合自动化系统的各个子系统全部微机化,其中还包括系统的功能软件化和信号数字化的内容,完全摒弃了常规变电所中各种机电式、机械式,大大提高了二次系统的可靠性和电气性能。操作监视屏幕化、图形化,通过微机CRT显示器,可以监视整个系统的实时运行情况和对开关设备及过程控制设备等进行操作控制。

3.2 通信网络化

计算机局域网络技术和光纤通信技术在综合自动化系统中得到普遍的应用。因此,系统具有较高的抗电磁干扰的能力,能够实现高速数据传输,满足实时性要求,组态更灵活,易于扩展,可靠性大大提高,而且大大简化了常规变电所繁杂量大的各种电缆,方便施工。

3.3 运行管理智能化

智能化不仅在传统的自动化功能上,如自动报警、自动报表、自动调节等方面,还表现在能够进行事故判别与处理、智能决策、在线自诊断等。智能系统具有以下特点:人机一体化;自组织;学习能力与自我维护能力;在未来,具有更高级的类人思维的能力。

4 结论

随着计算机技术和网络技术的快速发展,继电保护必将得到更大的发展,继电保护技术向着计算机化、网络化、一体化、智能化和综合自动化的方向发展。

参考文献

[1] 李渊.电力系统继电保护技术运用及前景展望[J].中国新技术新产品,2011,(11).

[2] 范磊.牵引变电所微机继电保护技术研究及装置实现

[D].武汉:华中科技大学,2009.

[3] 丁锋.电力系统继电保护技术的现状与发展[J].机械制造与自动化,2008,(10).

继电保护技术论文第6篇

关键词:电力系统;继电保护;现状;发展

0 引言

面对经济发展速度日渐加快的现状,对于电力能源的需求也日趋加大,所以电力工程面临着负荷运转的状态,因此提高电力系统的安全性是当前要考虑的重点内容,所以继电保护装置的应用显得尤为重要。继电保护技术在保障电力系统安全性的同时还能够使故障发生的概率降低,从而提高电力系统的经济性,尤其是近年来随着单片机技术以及计算机技术等不断发展,继电保护技术也日趋成熟。笔者结合自身的实际经验针对电力系统继电保护的现状进行分析,再对未来发展做出探讨。

1 电力系统继电保护的发展现状

1.1 机电式继电保护阶段

在建国之后我国在电力系统继电保护方面进行了深入的探究,用了将近十年的时间就达到了发达国家大半个世纪的研究水平,经历了继电保护设计与学科从无到有的过程。比较重要的时间段是20世纪50年代时,我国的工程技术人员通过自己的刻苦钻研以及借鉴国外先进的继电保护技术,形成了符合我国自身发展的继电保护理论,并且总结了十分丰富的继电保护经验,到那时为止已经建立了既有深厚的理论支撑又有丰富经验的继电保护技术队伍,为日后国内继电保护技术的发展打下了坚实的基础。到20实际60年代时,我国已经具备完整的继电保护研究、设计以及教学等多方面的体系,迎来了继电保护的繁荣时代。

1.2 晶体管式继电保护阶段

晶体管继电保护的正式开始研究在上个世纪50年代末期,晶体管大量应用于继电保护是在20世纪60代到80年之间,晶体管式继电保护得到了蓬勃的发展。标志性的事件是葛洲坝500kv线路应用的晶体管高频闭锁距离保护技术,这种技术是由天津大学与南京电力自动化设备厂合理研究的,该项技术的应用标志着我国告别了500kv线路完全依靠国外进口的状态。

1.3 集成电路式继电保护阶段

随着上个世纪70年代基于集成运算放大器的集成电路研究起步,到200世纪80年代时我国的集成电路继电保护就已经形成了完整的体系,晶体管式的继电保护也逐渐被取代,这一阶段属于集成电路保护的时代。

1.4 计算机式继电保护阶段

伴随着计算机技术的发展,在上个世纪70年代计算机技术已经逐渐应用于继电保护方面,许多高等院校以及研究院都很重视计算机技术在继电保护方面的应用,并且都研制出了不同原理与样式的微机保护装置。华北电力学院在1984年研制的输电线路微机保护装置在系统中获得了大范围的应用,为计算机式继电保护的发展揭开了新的篇章。到目前为止,微机线路的设备呈现原理多样化与机型多样化的趋势,它们各具特色,如今我国继电保护已经变为计算机保护时代。

2 电力系统继电保护发展趋势

2.1 智能化发展

随着计算机技术的突飞猛进以及计算机技术在继电保护系统领域中应用的逐渐扩展,尤其是近年来许多新型的控制原理与方法不断被应用到计算机继电保护中来,类似于人工神经网络、模糊逻辑以及专家理论等人工智能技术在电力系统的很多领域中都有应用,尤其推动了继电保护的研究向更高层次的方向发展。人工智能技术的发展为继电保护注入了新的元素,将多种人工智能技术结合,可以提高继电保护的可靠性,同时也为今后的继电保护发展指出了一个新方向。如今计算机以及通信等各种技术的快速发展也推动了继电保护技术的进步,可以预见出人工智能技术必将会广泛应用于继电保护领域之中,将常规方法难以解决的问题变得简单化。

2.2 计算机化发展

计算机硬件的性能可以根据摩尔定律算出,即芯片的集成度每隔18-24个月便会翻一番,因此硬件性能是成倍增加的,而当前的芯片的价格也是逐渐降低的。另外,单片化以及功能的不断强大是当前微处理机的主要发展趋势,所以一方面片内的硬件资源得到了大幅度的扩充,另一方面,单片机与DSP芯片二者在技术上也得到了融合,所以在运算能力上得到了显著的提高。在实际的使用过程中计算机保护的正确率也要远远高于其它模式,如今继电保护装置的计算机化已经成为了不可改变的趋势。

2.3 网络化发展

通过计算机网络可以实现线路保护、变压器保护等多方面功能,另外,与其它保护方式相比网络保护可以实现数据共享,另外,在母线的保护方面,由于分站保护系统采集了该站所有断路器的电流量、母线电压量,所以相比之下实现起来也更为容易。作为一种新的继电保护形式,网络式的继电保护是计算机保护技术发展的必然趋势,该模式的保护技术以通信技术、网络技术以及计算机技术为基础,主要针对省级或者市级主干网络的拓扑结构而言。

3 结语:

经济的发展离不开电力系统的支持,面对经济发展的快速进行对于电力系统来说也提出了更高的要求,因此电力系统的安全性必须要得到有效的保护。继电保护技术共经历了机电式保护、晶体管式保护、集成电路式保护以及计算机式保护四个阶段,针对这四个阶段的分析对继电保护为了的发展趋势做出探究,电力系统的继电保护未来将会向着智能化、计算机化以及网络化的方向发展,面对这一形式,对于继电保护工作者来说既是机遇也是挑战。

参考文献:

继电保护技术论文第7篇

【关键字】智能技术 继电保护 电力系统

中图分类号:F407文献标识码: A

继电保护能够及时地切除电力系统中的故障,以保障电力系统的安全,所以对电力系统的作用是不可估量的。继电保护的发展过程由电磁型开始,经过了整流型――晶体管型――集成电路保护,如今多数采用的是微计算机技术的数字式保护装置。如今,对继电保护的研究仍然在继续,新的方法和途径也在不断出现。人工智能作为一门新兴的学科,它所包含的人工神经网络、专家系统、模糊理论和多系统在继电保护中的运用在目前看来是取得了有效的成果的,但仍然存在着一些问题。

一、人工神经网络

这种信息处理系统是模拟人脑的组织结构和人类的认知过程。人工神经网络拥有自适应、分布处理以及联想记忆等诸多优点,所以在智能保护中也开始受到广泛地重视,也成为了继电保护的新途径。人工神经网络这个新方式是通过对大量标准样本进行学习和训练,从而不断地调整人工神经网络中的阈值和连接权,实现人工神经网络的模式记忆。这种方式不但拥有强大的数据获取能力,而且能够有效的进行含有噪音的数据的处理。

人工神经网络利用的是非线性的映射方式,所以一些无法列出方程式的问题,或者是一些无法求解的非线性问题都能得到有效的解决,所以这一个方法也在继电保护中得到了广泛的应用。比如如果输电线的两侧系统在电势角度摆开的情况下发生了经过渡电阻的短路,这就属于非线性的问题,对故障的位置很难做出正确的判断,但是人工神经网络能够通过对集中样本的分析和考虑,就能正确判断出发生故障的位置。通过几年的发展,人工神经网络在继电保护中不但能够用来判别故障的类型、测定故障的距离,而且能够有效保护主设备。另外,人工神经网络中所具备的强大的学习能力、自适应能力以及模式识别能力等,能够清楚地识别电力系统中出现的任何故障,帮助解决电流保护中的故障方向识别和灵敏度补偿等问题,保证电流保护对反方向上的故障进行封锁,对正方形上的故障有足够的保护范围,从而有效实现电流保护自适应,提高自适应能力。

由此可以看出,利用人工神经网络能够提高故障的诊断和解决效率。但是我们必须看到,这个方法也存在着一些问题,比如样本的完整对解决故障的效率有决定性影响,一旦样本不够完备,可能就无法有效地及时地解决故障。这将成为我们未来讨论和研究的方向。

二、专家系统

专家系统属于人工智能应用最广泛也是最活跃的课题,与知识工程研究的联系十分紧密。在这一方式中,不但可以通过书本上相关的理论来处理各种已经定型的问题,而且可以利用和总结专家的经验来解决问题,所以被称为专家系统。最突出的是,专家系统在解决问题时,可以缩小推理的范围,也可以缩小对知识的搜索,从而提高解决问题的速度,提升解决问题时的推理效率。此外,专家系统中所具备的解释模块功能也十分强大,它不但能解释推理出的结论,而且推理的过程,以及推理时用到的知识,它都一清二楚。

当专家系统用于继电保护时,有许多种知识表达方式,其中有两种是在计算机技术、计算机语言技术与智能技术的基础上发展起来的,分别是知识模型表示法以及面向对象表示法。而除此之外,还有生产式规则表示法、谓词逻辑表示法、框架式表示法以及过程式表示法。其中知识模型表示法和面向对象表示法是后面四种表示法的融合与发展,是新的形势和新的结构。

专家系统在继电保护中的作用也越来越重要,应用范围也越来越广泛。比如电力系统中如果发生运行方式的变化,或者在检修设备、投入新设备时,都有可能引起定值和保护配置的变化,这时专家系统就能根据电网结构、专家经验以及运行的规程等给出决策,帮助制定保护对策。另外我们还发现,专家系统可以和人工神经网络在许多方面相互协调、互相补充,

所以,怎样才能更好地做到取长补短将二者更和谐地融为一体,是目前的一个研究方向。

虽然专家系统有如此多的优势和优点,在工作中也有极高的效率,但是这个方式在实际的工作和运用中还是存在着一定的缺陷和问题。例如,对于知识库的建立和维护,一直都是最大的问题,是这项技术的难点。另外在专家系统中,一旦遇到的故障相对复杂时,推理的速度就会变慢,而且容错的能力也有待提高。这些问题的存在都在很大程度上影响了保护动作的准确性,影响了工作的效率。

三、模糊理论

模糊理论是在模糊集合理论的基础上发展而成的,是采用了模糊隶属度的概念,来描述不确定的事件、不精确的现象,以区别于经典的集合中用0和1来表示的非此即彼的概念,引入的是近似推理和语言变量的模糊逻辑,从而来表述专家的知识经验。模糊理论作为人工智能技术中的一种,经过多年的发展和研究,已经具备了完整的推理体系,其运用也越来越广泛了。模糊理论在识别时更倾向于特征识别,更像是人类的识别过程。人类对于事物的认识过程是通过事物的特征对事物进行识别与分类,在这一过程中,不用进行复杂而精确的计算,模糊理论在继电保护中为这种类型的识别提供了有效工具。比如在电力系统中,一直都存在着大量的电气量,利用模糊理论可以区分和辨别不同对象的特征,以实现更高的性能。

模糊理论在继电保护中,对于线路的保护、发电机的保护等方面都起到了非常重要的作用。但是由于这一方式中对于获取隶属度、建立和辨识复杂系统的模型、获取和修改语言规则等相关的具体方法和理论还没有得到足够的完善,而且模糊理论没有学习的能力,所以这个方式的运用有了一定的限制。

四、综合运用各种智能方法

可以看出,每一种人工职能技术都有着自身的极大优势,但同时,又都存在着一定的问题或缺陷,单独使用可能无法完美地解决继电保护中出现的复杂问题。目前主要的研究方法是将这些智能方式有效地结合为一体,成为一种综合的人工智能技术,该项技术能够充分体现出各种智能方法的长处,而在短处上相互补充和协调,例如上文提到的专家系统与人工神经网络的互相“取长补短”。从而实现继电保护的可靠、灵敏、快速。

五、结束语

综上所述,电力系统中的继电保护有着非常重要的作用,当电力系统出现故障时,继电保护能够迅速而准确地判断出故障的元件和故障的性质,并对故障进行自动地处理,使电力系统能够恢复正常的运行。这都是因为智能技术在继电保护中起到的作用。随着继电保护问题的复杂化,单一的人工智能技术可能无法满足解决问题的要求,所以将各种不同的职能技术进行融合,取长补短,是今后智能技术发展的方向和必然趋势。

【参考文献】

[1] 吕卫胜.人工智能技术在电力系统继电保护中的应用[J].山东电力技术,2006,(1):61-63.

[2] 曾宪知.分析继电保护中的人工智能技术及其应用[J].城市建设理论研究(电子版),2013,(24).

[3] 吉军.刍论人工智能技术在电力系统继电保护中的应用[J].城市建设理论研究(电子版),2013,(23).

[4] 陈斌.人工智能技术在继电保护中的应用与发展[J].广东科技,2009,(22):140-142.

继电保护技术论文第8篇

关键词:电气主设备;TA饱和;光电压互感器;继电保护;技术分析

电力系统是当前社会发展中的主要基础设施,电力系统的发展是保证社会发展的基础前提,是实现社会稳定的主要手段和措施。当前社会发展中的各种生产设备和生产工具都离不开电力系统的支持。随着当前人们对电力系统的要求不断增加,各种先进技术和设备在电力系统的应用也在不断地增加之中。继电器保护技术是电力输送过程中的基础,是实现电力良好有效发展的前提。随着科学技术的发展,特别是电子技术、计算机技术和通信技术的发展,电力系统继电保护先后经历了不同的发展时期。近10年来,电力工业突飞猛进,整个电力系统呈现出往超高电压等级、单机容量增大、大联网系统方向发展的趋势,这就对主设备保护的可靠性、灵敏性、选择性和快速性提出了更高的要求。

一、电气主设备保护的现状

电力系统的飞速发展对继电保护不断提出新的要求,随着当前社会发展过程中,计算机技术和信息技术的不断发展,继电器保护技术不断的出现了新的发展模式和发展理念,成为当前电力系统中的主要发展前提和手段。

近年来主设备保护的分析计算方法取得了很大进展,比如采用多回路分析法可以比较精确地计算发电机的内部故障,主设备内部故障保护的配置具备了理论基础。利用真实反应主设备内部各种故障及异常工况的动模系统和仿真系统检验主设备保护,极大地提高了新原理新技术的验证水平。

(一)主设备保护的双重化配置和主后一体化趋势

近年来,双主双后保护配置方案逐渐应用到主设备保护的领域,继电保护实施细则对主设备保护的双重化作出规定后,双主双后保护方案成为主设备保护研制、设计的指导准则,并为现场运行提供了极大的方便。

(二)主设备保护的新原理

近年来,主设备保护通过对故障过程的电磁暂态过程的研究、TA饱和特性的研究、内部故障理论分析,结合实际动模和数字仿真,提出了一些新的原理并已在现场广泛应用。

1.差动保护。常规的两折线、三折线比率差动、标积制动式差动、采样值差动等已在很多文献中有所介绍。

2.关于励磁涌流。目前在工程上应用的判别励磁涌流的原理都是从涌流波形与短路电流波形的不同特征入手,来区分励磁涌流与短路的。各种涌流判别原理都具有在故障合闸时,保护动作时间长或动作时间离散度大的缺点。

3.关于TA饱和。TA饱和问题是主设备保护共同面对的问题。由于大型发电机变压器组容量大,故障电流非周期分量衰减时间常数长,可能引起差动保护各侧TA传变暂态不一致或饱和。对于变压器,各侧TA特性不一致,更易引起TA饱和,这样可能会造成在区外发生故障时差动保护误动对于母线近端发生区外故障时,TA也会严重饱和。因此差动保护需有可靠的 TA饱和判据。

二、主设备保护的发展趋势

(一)保护装置的一体化发展

1.充分的资源共享,一个装置包含了被保护元件所有的模拟量,保护逻辑的判据可以充分利用所有电气量,使保护更加完善、可靠,判据更加灵活实用。

2.主后一体化装置,给故障录波、后台分析带来了便利。任何一个故障启动或动作保护装置就可以录下整个单元所有模拟量,使得现场故障的综合分析、定性及事故处理更加方便,而分体式保护只能录下部分信息。

3.主后一体化装置便于保护双重化的实现。主后共用一组TA,TA断线概率大大下降;装置数量少,误动概率降低。

(二)新型光电流互感器、光电压互感器的应用

传统的电磁式TA是一种非线性电流互感器,具有铁磁谐振、磁饱和、绝缘结构复杂、动态范围小、使用频带窄、铜材耗费大,远距离传送造成电位升高等问题。

(三)信息网络化

变电站监控和发电厂电气监控系统的发展,要求主设备保护具有强大的通信功能,以便通过监控系统实现保护动作报文管理、故障数据处理、定值远方整定、事故追忆等功能,实现了电气智能设备运行的深层次管理。

在采用高速度、大容量的微处理器及高速总线设计后,保护装置将具有更完善的数据处理功能和通信功能,可以更好地实现保护信息化、网络化设计。主设备保护除了动作后经通信网络上传故障报文、数据到监控系统以外,还可以为系统动态提供保护装置的运行状态和信息,并可根据系统运行方式的变化通过数据交换,提供修改保护判据和定值的依据,保证全系统的安全稳定运行。

(四)故障分析技术

新一代主设备保护必须具有强大的故障录波功能,除了记录完整的事件报文、故障数据外,装置还可以记录故障发生前后全过程所有的模拟量、开关量、启动量、中间量的变化,完整地记录每个保护的动作行为。主设备保护的故障信息上传至电气监控系统或保护信息管理系统后,通过高级应用软件,分析保护的动作行为是否正确,为故障查找、分析提供充分的依据。完整的故障数据经数字仿真系统可实现主设备的故障再现,对事故进行深入分析,为保护性能的改进完善提供重要的依据。

(五)信息网络技术

当代继电保护技术的发展,正在从传统的模拟式、数字式探索着进入信息技术领域。在变电站综合自动化方面,保护的配置比较灵活。如果变电站综合自动化采用传统模式,也就是远方终端装置(RTU)加上当地监控系统,这时候,保护装置的信息可以通过遥信输入回路进入RTU,也可以通过串行口与RTU按照约定的通信规约进行信息传递。

(六)自适应技术、智能技术和数字技术的发展

自适应继电保护的基本思想是使保护能尽可能地适应电力系统的各种变化,进一步改善保护的性能。对于主设备保护而言,它与某些保护的判据、定值和系统的变化也是息息相关的,比如发电机失步保护、变压器零序保护等。目前,部分保护功能已经具备了一定的自适应能力,比如浮动门限、变斜率比率差动保护中的制动特性、自适应3次谐波电压比率定子接地判据等。随着与微机保护技术密切相关的其他科技领域新技术和新理论的出现,通信技术、信息技术、自适应控制理论、全球定位系统(GPS)等的应用,必将促进自适应保护的飞速发展。