摘要:在信息推荐系统中,传统的方法是通过对内容、行为去预测用户的兴趣点来实现信息推送。国内外研究实验结果表明,这种模型推荐性能较为显著,说明用户行为和内容是相关的。根据相关性的对称原理,文章提出了基于用户行为的Word2Vec协同推荐算法,通过神经网络模型来隐式地抽取商品和用户的相互关系并进行向量化表示,能够更好地计算商品和用户间的相似性,以达到提升模型的推荐效果和泛化能力。
注:因版权方要求,不能公开全文,如需全文,请咨询杂志社
热门期刊服务
影响因子:0.67
期刊级别:部级期刊
发行周期:月刊
期刊在线咨询,1-3天快速下单!
查看更多>
超1000杂志,价格优惠,正版保障!
一站式期刊推荐服务,客服一对一跟踪服务!